古龙飞扬
码龄18年
求更新 关注
提问 私信
  • 博客:307,920
    问答:1
    307,921
    总访问量
  • 325
    原创
  • 1,380
    粉丝
  • 44
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2008-05-24
博客简介:

专业深耕,技术前沿

博客描述:
欢迎关注我的CSDN博客,一起探索技术的无限可能,共同推动技术进步与发展!
查看详细资料
个人成就
  • 获得4,476次点赞
  • 内容获得9次评论
  • 获得3,936次收藏
  • 代码片获得714次分享
  • 博客总排名10,775名
  • 原力等级
    原力等级
    4
    原力分
    924
    本月获得
    2
创作历程
  • 318篇
    2025年
  • 6篇
    2023年
  • 3篇
    2016年
成就勋章
TA的专栏
  • AI
    1篇
  • Java
    22篇
  • 硬件编程
    6篇
  • Docker
    5篇
  • mySql
    21篇
  • 技术知识
    2篇
  • 编程思维
    10篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 7

兴趣领域 设置
  • Python
    python
  • Java
    javaspringmavenspring bootspring cloudjvmjettyjunitlog4jservletmybatisguava
  • 大数据
    大数据
  • 人工智能
    计算机视觉人工智能lstm文心一言
  • 区块链
    区块链信任链去中心化
  • 运维
    linuxdocker系统架构运维开发skywalking
  • 教育培训
    c1认证c4javac4pythonc4前端c5底层c5交付c5全栈
  • 前沿技术
    低代码量子计算python3.11java18
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Rust实战演练指南

本文介绍了Rust编程语言从入门到进阶的系统学习路径。内容包括:1) Rust开发环境搭建(安装工具链、配置VSCode);2) 基础语法(变量声明、数据类型、控制流);3) 核心特性(所有权、借用、错误处理);4) 实战项目开发流程;5) 测试与调试方法;6) 高级特性(生命周期、并发编程);7) 性能优化技巧;8) 常用工具链;9) 实际应用案例;10) 常见问题解决方法。文章通过代码示例详细讲解每个知识点,并推荐了官方文档等学习资源,为读者提供了一条完整的Rust学习路径。
原创
博文更新于 2025.11.03 ·
995 阅读 ·
17 点赞 ·
0 评论 ·
18 收藏

AWS SageMaker 学习路线图

本文系统介绍了AWS SageMaker机器学习服务平台的五大核心模块。第一部分解析SageMaker作为完全托管ML服务的定位、价值及架构;第二部分以鸢尾花分类为例演示端到端ML流程;第三部分深度剖析数据处理、模型训练、优化等核心组件;第四部分展示自动化工具和生态集成;第五部分提供安全、成本优化等最佳实践。全文采用"核心认知-实战入门-深度解析-高级特性-最佳实践"的递进式结构,帮助读者从基础到进阶掌握SageMaker,特别强调"从核心工作流入手,逐步探索"的学习
原创
博文更新于 2025.10.31 ·
508 阅读 ·
7 点赞 ·
0 评论 ·
19 收藏

通义灵码详细学习(一):基础入门与环境搭建

摘要:本文详细介绍了阿里云「通义灵码」智能编码助手的安装使用指南。主要内容包括:1)产品定义与核心功能(代码补全、生成、解释等);2)环境兼容性要求(支持VSCode和JetBrains系列IDE);3)分步骤安装流程;4)账户登录授权方法;5)界面交互基本操作(智能问答、快捷键等)。该指南帮助开发者快速搭建AI编程辅助环境,实现人机协同开发。
原创
博文更新于 2025.10.31 ·
1204 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

Trae 全解析

摘要:Trae是字节跳动2025年推出的AI原生集成开发环境(AI IDE),深度融合GPT-4o等大模型能力,实现从代码生成到质量保障的全链路开发辅助。核心功能包括自然语言编程(NL2Code)、智能调试、多模态交互等,支持20+编程语言的语义级理解,内置3000万+开源项目缺陷库进行实时风险检测。典型应用场景涵盖Web开发、API开发等领域,实测开发效率提升4-8倍。相比Cursor等竞品,Trae提供免费版本且集成顶级AI模型,显著降低开发门槛。未来将持续优化AI能力并扩展生态建设。
原创
博文更新于 2025.10.30 ·
1038 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

PyTorch核心概念与环境配置详解

本文介绍了PyTorch的核心概念、环境配置和常见问题。核心概念包括张量(支持GPU加速的多维数组)、自动微分机制(动态计算图和梯度计算)、神经网络模块(nn.Module)、优化器和损失函数。环境配置指南详细说明了Python和PyTorch安装步骤,推荐使用Anaconda管理虚拟环境,并提供了CUDA版本选择和验证方法。常见问题涉及安装失败、GPU加速失效和版本冲突,给出了使用国内镜像源、更新驱动和固定版本等解决方案。通过本文可快速掌握PyTorch基础知识和开发环境搭建。
原创
博文更新于 2025.10.30 ·
860 阅读 ·
27 点赞 ·
0 评论 ·
8 收藏

TensorFlow 学习大纲

本文系统介绍了TensorFlow深度学习框架的核心内容与应用实践。首先讲解了基础环境搭建,包括不同版本的安装方式及核心概念(张量、计算图等)。随后详细阐述了TensorFlow的核心功能与操作,涵盖张量运算、模型构建与训练流程。文章重点展示了多个实战项目,如手写数字识别、图像分类和自然语言处理任务。在进阶部分,深入探讨了GAN、Transformer等高级模型架构,并介绍了模型优化、分布式训练和生产部署等关键技能。最后提供了学习路径建议和资源推荐,帮助读者从入门到精通TensorFlow。全文贯穿理论与实
原创
博文更新于 2025.10.24 ·
906 阅读 ·
13 点赞 ·
0 评论 ·
10 收藏

AI开发工具

2025年AI开发工具全景解析:核心框架TensorFlow 2.15和PyTorch 2.3分别强化生产部署和科研效率,国产工具Trae、通义灵码实现技术突破。云平台如AWS SageMaker、阿里云PAI提供全托管服务,开源工具HuggingFace活跃度高。自动化工具MarsCode、CodeGeeX提升编码效率,垂直领域专用工具覆盖NLP、CV等场景。趋势显示边缘计算、多模态AI和隐私计算快速发展,实战案例验证工具链可显著提升开发效率。建议根据学术研究、企业开发等不同需求组合工具,实现最优技术方案
原创
博文更新于 2025.10.24 ·
498 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

编程思维核心架构:从代码到认知的映射--概率性思维--从确定到不确定的进化

《概率性思维:编程中的不确定性管理艺术》摘要:概率性思维是一种通过概率统计工具处理不确定性的决策方式,其核心在于将随机性转化为可量化模型。在编程领域,它广泛应用于随机算法优化(如蒙特卡洛方法)、概率数据结构(布隆过滤器)、机器学习(贝叶斯网络)和系统设计(负载均衡)等场景。这种思维模式与人类"假设-验证-更新"的认知过程高度吻合,通过贝叶斯推理实现持续学习。培养路径需结合概率统计理论、工具实践(Python/R)和认知训练,但需警惕数据依赖和模型僵化等局限。当前突破方向包括贝叶斯深度学习
原创
博文更新于 2025.10.20 ·
677 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

编程思维核心架构:从代码到认知的映射--版本控制思维--从混乱到有序的治理

版本控制思维从工具应用发展为治理能力,通过历史追溯、分支管理和冲突协调构建系统化协作模型。它映射人类认知过程,支持代码演化与知识管理的结构化处理,在编程中实现分布式协作与自动化流程。该思维培养严谨逻辑与创新能力,其应用已拓展至学术、法律等领域。前沿发展包括区块链和量子计算的应用,教育价值体现在培养系统性思维和跨学科能力。版本控制作为数字化时代的"元治理技能",正在重塑人类解决问题的思维方式。
原创
博文更新于 2025.10.20 ·
1187 阅读 ·
39 点赞 ·
0 评论 ·
13 收藏

编程思维核心架构:从代码到认知的映射--迭代思维--从完美到渐进的转变

摘要:迭代思维是一种通过"重复-反馈-改进"循环渐进优化的方法论,核心在于承认完美不可一次性达成。在编程中体现为敏捷开发、TDD、算法优化等实践,映射人类"试错学习"的认知过程。培养迭代思维需理论学习与实践结合,同时警惕过度迭代风险。该思维与其他编程思维协同,成为连接"完美追求"与"现实渐进"的桥梁,通过持续改进提升系统适应性和程序员认知能力,最终实现"拥抱不完美,追求持续进化"的编程境界。(148字)
原创
博文更新于 2025.10.20 ·
320 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

编程思维核心架构:从代码到认知的映射——概率性思维--从确定到不确定的进化

摘要: 概率性思维通过概率与统计工具处理不确定性,实现从确定性逻辑到概率化决策的进化。其核心在于贝叶斯推理、随机算法(如蒙特卡洛方法)及概率数据结构(如布隆过滤器),广泛应用于机器学习、系统优化等领域。这种思维映射人类“假设-验证”认知过程,需通过学习概率论、统计建模及实践(如Kaggle项目)培养,但需警惕数据依赖与认知偏差。未来方向包括贝叶斯深度学习与因果推断,与其他编程思维协同可提升问题解决能力。概率性思维是连接确定性与不确定性的关键,推动量化决策与长期优化。
原创
博文更新于 2025.10.20 ·
758 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

编程思维核心架构:结构化思维——从线性到系统的跃迁

摘要: 结构化思维是编程思维的核心能力,通过模块化、层级化和系统化的逻辑框架,将复杂问题转化为可管理的系统模型。它在编程中体现为模块化设计(如函数、类)、层级抽象(如MVC架构)和系统集成(如API、微服务)。这种思维与人类认知同构,应用于城市规划、医学诊断等领域,提升认知效率。在算法设计中,分治、动态规划等策略依赖结构化思维;数据结构则通过线性、树形等组织方式支持高效操作。结构化思维培养严谨逻辑、模式识别和创新能力,并在云计算、AI等前沿领域持续发展。少儿编程通过图形化工具培养结构化思维,提升跨学科能力。
原创
博文更新于 2025.10.20 ·
330 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

编程思维核心架构:从代码到认知的映射——调试优化

调试优化是编程中"问题-修正-提升"的闭环过程,涵盖错误定位、性能改进和代码质量提升。其技术体系包括静态分析、动态调试和测试驱动等方法,通过模式识别实现快速问题定位和优化方案复用。该过程培养程序员系统思维和科学方法论,但需避免经验固化和过度优化。未来发展方向是智能调试和可解释性优化,强调在性能、可读性和可维护性间取得平衡。优秀的调试优化能力需要工具实践、经验积累与认知反思的结合,最终实现高效编程。
原创
博文更新于 2025.10.20 ·
331 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

编程思维核心架构:从代码到认知的映射——算法设计

算法设计是编程思维的核心能力,通过分解、抽象和优化将复杂问题转化为可计算步骤。它反映了人类认知模式,如递归对应分治思维,启发式搜索类似路径决策。经典策略包括分治法、动态规划和贪心算法,这些方法不仅提升计算效率,还能培养严谨逻辑和创新能力。算法设计在量子计算、AI等领域持续创新,其教育价值体现在培养跨学科思维。正如迪科斯彻所言,算法让复杂问题变得简单,是数字化时代的核心技能。
原创
博文更新于 2025.10.20 ·
408 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

编程思维核心架构:从代码到认知的映射——模式识别

摘要:模式识别是人工智能核心技术,通过数据特征提取和模型构建实现分类预测。其编程应用体现在代码复用、问题分解与算法匹配上,如设计模式应用和错误诊断。人类认知过程(分析-比较-决策)与编程思维高度映射,表现为问题拆解与模式抽象。典型应用包括生物识别、智能交通和代码优化。培养该能力需算法学习、刻意练习和抽象思维训练,但需避免模式依赖导致的创新局限。模式识别作为编程思维核心,连接代码与认知,能显著提升问题解决效率,需理论实践结合以达到举一反三的效果。(149字)
原创
博文更新于 2025.10.20 ·
455 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

编程思维核心架构:从代码到认知的映射——抽象思维

摘要:抽象思维是编程中的核心能力,通过剥离非本质细节,聚焦核心结构与关系,实现复杂问题到可计算模型的转化。它在数据、过程和控制三个层面体现为:数据封装、功能复用和通用流程设计。抽象思维与人类认知同构,可提升模式识别、跨学科迁移和创新能力,在OOP、FP和系统架构中广泛应用。研究表明,抽象思维训练能增强逻辑思维和问题解决能力,是数字化时代的必备"元认知工具"。
原创
博文更新于 2025.10.20 ·
1329 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

编程思维核心架构:从代码到认知的映射——分解思维详解

分解思维是编程思维的核心,强调将复杂问题拆解为可执行的子问题。其本质映射人类认知过程,通过分而治之降低认知负荷,增强抽象能力。在编程中体现为算法设计、模块化开发等实践,同时提升逻辑思维和纠错能力。该思维可跨学科应用,从数学递归到建筑模块化设计。研究表明,少儿编程能培养分解思维,提升问题解决能力。作为数字化时代的"元技能",分解思维连接代码与认知,是高效应对各类挑战的思考基石。
原创
博文更新于 2025.10.20 ·
784 阅读 ·
14 点赞 ·
0 评论 ·
19 收藏

编程思维重塑问题解决逻辑与日常决策的深度解析

编程思维作为一种认知体系,通过分解、抽象、模式识别、算法设计和调试优化五大模块重塑问题解决逻辑。研究表明,这种思维能提升决策效率(40%)、降低错误率(30%),在消费、职业发展等领域产生显著影响。典型案例包括马斯克的火箭成本重构和丰田的安灯系统。但需注意避免过度理性化,应结合设计思维等保持平衡。随着数字化发展,编程思维正成为数字时代的核心元能力,推动人类从工具使用转向系统设计。
原创
博文更新于 2025.10.19 ·
807 阅读 ·
17 点赞 ·
0 评论 ·
9 收藏

Java硬件编程常见问题

本文总结了Java硬件编程中的关键问题与解决方案。主要内容包括:1)硬件交互(串口/USB通信配置、GPIO控制、JNI调用注意事项);2)内存管理与性能优化(内存泄漏处理、JVM调优、对象池应用);3)中断与异常处理(中断服务例程设计原则、精准异常捕获);4)调试工具链(IDE调试、命令行工具、硬件分析仪器);5)资源受限场景的特殊考量(手动内存管理、低功耗设计)。文章强调需结合硬件特性与Java优势,通过合理选型工具库、严谨编程实践和持续性能优化来确保系统稳定性。
原创
博文更新于 2025.10.19 ·
881 阅读 ·
13 点赞 ·
0 评论 ·
17 收藏

Java学习大纲

本文系统梳理了Java全栈开发知识体系,分为基础篇、进阶篇、应用开发篇和高级扩展篇四大模块。基础篇涵盖环境搭建、语法基础、OOP特性和核心类库;进阶篇讲解多线程、网络编程和JVM调优;应用开发篇包括数据库、Web开发和Spring生态;高级篇涉及分布式系统和新特性。最后给出分阶段学习路径建议,强调从基础语法到微服务架构的系统化学习过程,适合开发者循序渐进掌握Java全栈技能。
原创
博文更新于 2025.10.19 ·
634 阅读 ·
30 点赞 ·
0 评论 ·
14 收藏
加载更多