AI人工智能时代
码龄2年
求更新 关注
提问 私信
  • 博客:68,670
    68,670
    总访问量
  • 62
    原创
  • 579
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2023-08-05

个人简介:【大模型研习社 | 用AI撬动未来】 在这里,你将收获: 零门槛解读ChatGPT、文心一言等前沿大模型核心原理 手把手实战教程:从模型微调到行业级应用落地 每日更新!AIGC创新案例/Prompt技巧/论文精读/工具测评 企业级解决方案 × 个人效率革命,让AI成为你的超能力 我们专注: ▷ 大模型底层架构解密 ▷ 垂直领域应用爆破 ▷ 开发部署避坑指南 ▷ 全球AI前沿速递 ▷ 开源项目复现 ▷ 职业发展新赛道 无论你是AI萌新还是资深极客,这里都有你想要的"硬核知识燃料"! 关注即送《大模型实战入门大礼包》,回复"进化"开启你的智能

博客简介:

lizhijianwill的博客

查看详细资料
个人成就
  • 获得1,457次点赞
  • 内容获得0次评论
  • 获得687次收藏
  • 博客总排名34,371名
  • 原力等级
    原力等级
    4
    原力分
    607
    本月获得
    1
创作历程
  • 63篇
    2025年
成就勋章
TA的专栏
  • 大模型
    6篇
  • 文生图
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

普通人未来3年最大的财富机会!国务院重磅发布“人工智能+”政策!

国家发布《关于深入实施"人工智能+"行动的意见》,明确到2027年AI应用普及率超70%,2030年超90%。文件指出AI发展已从技术研发转向全面应用阶段,将重点布局算力、数据、人才、资本四大基础设施。工业领域、智能原生应用和智能体Agent将成为三大重点发展领域。分析认为,普通人可关注AI+工业解决方案、数据服务、AI培训等机会,具备数学基础、会使用AI工具将成为未来核心竞争力。国家此次战略布局,标志着中国在AI时代力争从参与者转变为引领者的决心。
原创
博文更新于 2025.09.01 ·
714 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

从零教你做一个mcp服务端和客户端,真正理解什么是mcp(保姆级教程+代码),智能体和大模型的高效落地就靠mcp了。

🛠️ 可用工具: [<Tool name='add' description='这个工具能将两个数字相加' arguments={'a': <Argument type='integer'>, 'b': <Argument type='integer'>} result_type='integer'>]传统的API调用方式,往往显得笨拙、低效,甚至有点“智障”。你的客户端成功启动了服务器,并与之进行了一系列的交互:列出了可用的提示、资源和工具,并且成功地获取了提示内容、读取了资源、调用了工具并得到了结果!
原创
博文更新于 2025.04.14 ·
1408 阅读 ·
34 点赞 ·
0 评论 ·
6 收藏

5天速成ai agent智能体camel-ai之第5天:MCP 给大模型装上“手”和“眼”,效率原地起飞!(附运行源代码)

对于重复性的、基于规则的数字任务,比如从多个网站收集数据并整理到表格、监控竞品价格并生成报告、自动处理客服邮件中的常见问题等,配备了 MCP 的 AI Agent 可以 7x24 小时不知疲倦地完成,将人类从繁琐的工作中解放出来。* 你发现一篇超赞的最新研究论文 PDF,想让 AI 快速提炼核心观点,你却只能手动复制粘贴,或者苦苦寻找能处理 URL 的插件,过程繁琐得让人抓狂。没有 MCP,AI 只能告诉你“你可以去 XXX 网站查找”,或者基于它训练数据里的旧信息给你一个大概的回答。
原创
博文更新于 2025.04.10 ·
929 阅读 ·
12 点赞 ·
0 评论 ·
6 收藏

AI 革命的下一站:Agent 智能体!李宏毅万字拆解,看懂它,你就领先 90%的人

😂 LLM 也有自己的“内部知识”,它会和工具提供的“外部知识”进行“角力”。,形成更深层次的理解或新的见解(比如从“她天天跟我同车”+“她今天对我笑了”反思出“她可能喜欢我”😍)。早在 2022 年(ChatGPT 出现前的“上古时代”),就有人试过用当时的 LLM 下西洋棋。这说明,至少在下棋这种需要精确逻辑和规则的任务上,目前的 LLM Agent 还有很长的路要走。别急,今天这篇文章,就为你深度拆解李宏毅教授的核心观点,用大白话讲透 AI Agent 的前世今生、核心能力和未来潜力。
原创
博文更新于 2025.04.09 ·
725 阅读 ·
24 点赞 ·
0 评论 ·
17 收藏

5天速成ai agent智能体camel-ai之第4天:揭秘多智能体协作魔法!(附零基础可运行源代码)你的专属AI“梦之队”已上线,效率秒杀人类团队!

(Communicative Agent cooperative Meta-framework Enhanced Language models) 这个框架,就像一个超级项目经理 + HR,它能让你轻松地“招聘”并“管理”多个AI Agent,让它们像一个真正的团队一样,分工合作,共同完成一个复杂的任务。* `model_config_dict`: 对“大脑”进行微调,比如 `temperature` 控制它的创造性(越低越保守),`max_tokens` 限制它一次回答的长度。
原创
博文更新于 2025.04.08 ·
1387 阅读 ·
33 点赞 ·
0 评论 ·
17 收藏

5天速成ai agent智能体camel-ai之第3天:提升大模型回复精准率,camel-ai的RAG知识库教程(零基础可运行代码)

load_dotenv(dotenv_path=env_path, override=True) # override=True 表示如果系统变量和.env都有,用.env的。print("系统原生环境变量:", os.environ.get('QWEN_API_KEY')) # 检查系统环境变量(如果设置了的话)你不需要成为顶尖的AI科学家,只需要理解这个流程,借助 `camel-ai` 这样友好的工具,就能让AI真正为你所用,解决你最关心的问题。print("请检查:1. API Key是否正确有效。
原创
博文更新于 2025.04.07 ·
1508 阅读 ·
34 点赞 ·
0 评论 ·
8 收藏

5天速成ai agent智能体camel-ai之第2天:camel-ai的双智能体协作教程

3. `assistant_agent_kwargs=dict(model=model)` 和 `user_agent_kwargs=dict(model=model)`: 把我们之前创建的那个`model`(无论是智谱还是Qwen)分配给这两个Agent。这本身就是AI能力的体现!6. `task_specify_agent_kwargs=dict(model=model)`: 如果启用了任务细化 (`with_task_specify=True`),那么这个“需求分析师”AI也需要一个大脑来工作。
原创
博文更新于 2025.04.06 ·
1481 阅读 ·
30 点赞 ·
0 评论 ·
11 收藏

5天速成ai agent智能体camel-ai之第1天:camel-ai安装和智能体交流消息讲解(附源码,零基础可学习运行)

role_at_backend`参数指定了在对方系统里这条消息应该扮演什么角色(比如`USER`或`ASSISTANT`)。我们用`requests`库从网上抓了张图,用`PIL`和`BytesIO`把它处理成程序认识的图片格式,然后把它塞进了`BaseMessage`的`image_list`参数里。所有复杂的对话,都是由一条条基本的消息组成的。同时,`.to_dict()`方法也很有用,它可以把消息对象变成Python字典,方便你检查里面的具体内容,或者序列化(比如存成JSON文件)。
原创
博文更新于 2025.04.05 ·
1161 阅读 ·
18 点赞 ·
0 评论 ·
7 收藏

“爆款小说家”AI agent 智能体!逆天!我用这段代码3分钟生成一个爆款小说,可以出版,可以赚钱!零基础可学会可运行的代码!

(这里可以根据实际情况引导用户去哪里获取,比如某些提供试用额度的AI平台)* 获取Key后,需要配置一下环境变量,代码里 `load_dotenv()` 就是干这个的,或者你可以直接在代码里替换 `api_key = "你的Key"` (但不推荐,环境变量更安全)。这一步就像给你的电脑装上必要的“零件”。调整一下你的输入(主题/要求),或者修改一下代码里的 Prompt(提示词,比如 `planning_prompt`、`directory_prompt` 里的要求),看看AI会有什么不同的反应。
原创
博文更新于 2025.04.04 ·
2293 阅读 ·
7 点赞 ·
0 评论 ·
6 收藏

未来5年,这5大行业将被AI颠覆!这3种职业最危险,但这2类人反而更吃香?

无论是国外的OpenAI、Google、Microsoft,还是国内的百度、阿里、腾讯,都在AI大模型领域投入巨资。比如懂AI的医生、懂AI的金融分析师、懂AI的教育专家,他们能将AI技术应用到具体行业,解决实际问题。AI能自动批改作业、答疑解惑,甚至能根据学生的表情、语气,判断其学习状态,及时调整教学策略。AI大模型的发展,是不可逆转的趋势。从最初的文本生成、图像识别,到现在的自动驾驶、药物研发,AI大模型正在渗透到各行各业。你有没有想过,也许明年,给你做手术的,就不是医生,而是一个AI机器人?
原创
博文更新于 2025.03.22 ·
1080 阅读 ·
38 点赞 ·
0 评论 ·
8 收藏

效率提升1000%!开源agent大模型智能体强势崛起,动动嘴皮子,教程自动生成!

2. 严格按照以下字典格式输出: {{"title": "xxx", "directory": [{{"章节1": ["小节1", "小节2"]}}, {{"章节2": ["小节3", "小节4"]}}]}}它不仅能听懂人话,还能根据你的需求,自动生成各种高质量教程!:负责接收用户输入的任务,调用`directory_action`生成目录,然后调用`_generate_tutorial()`生成完整教程。obs_2 = """{"title": "Python基础教程", "directory": [
原创
博文更新于 2025.03.18 ·
787 阅读 ·
13 点赞 ·
0 评论 ·
5 收藏

开源版DeepResearch来了,浏览器跑出10倍效率的3个秘密

它可不是一般的AI工具,它能把搜索引擎、网页抓取和大语言模型。`deep-research-web-ui` 使用MIT许可证,代码完全开源!传统AI助手只会简单回答问题,而它像个不知疲倦的研究员,一层层挖掘信息,直到挖到你满意为止!🤫悄悄告诉你,下期我们将揭秘更多AI黑科技,让你大开眼界!所有配置、API请求都在你电脑本地完成!🔒 你的数据你做主!的开源项目,直接把“深度研究”搬到你浏览器里!,在这个数据隐私比黄金还贵的时代,简直是研究人员的救星!* 分享给你的朋友,一起探索AI的无限可能!
原创
博文更新于 2025.03.16 ·
1345 阅读 ·
42 点赞 ·
0 评论 ·
17 收藏

零基础打造AI agent智能体!Windows从安装Python到调用顶级API,10分钟速成攻略!(2025年最新环境配置篇)

打开Anaconda Prompt(安装Miniconda后,开始菜单里会有),输入`conda create -n myenv python=3.9`(`myenv`是环境名,`3.9`是Python版本,按需修改)。跟着我,只需简单几步,你也能成为AI时代的弄潮儿!在你的项目文件夹下,打开命令提示符,输入`python -m venv .venv`(`.venv`是虚拟环境的名字,你可以自己改)。* 在`python_example`文件夹下,创建一个名为`.env`的文件(注意,前面有个点!
原创
博文更新于 2025.03.15 ·
1786 阅读 ·
30 点赞 ·
0 评论 ·
7 收藏

Manus开源了,使用OWL 3分钟打造自己的ai员工!(保姆级教程)

基于Playwright框架,页面滚动、点击、输入、下载,甚至历史回退,统统不在话下,简直就是浏览器里的“自动驾驶”!OWL智能体,一款功能强大、开源免费的国产AI神器,不仅能帮你提高工作效率,还能拓展你的能力边界。内容转文本、转Markdown,分分钟的事儿!网页界面使用Gradio构建,在你的本地机器上运行,除了你配置的模型API调用所需的数据外,不会向外部服务器发送任何数据,安全可靠!:无论是网上的视频、图片,还是本地的音频文件,OWL都能轻松处理,帮你提取关键信息,再也不用对着一堆素材发愁了!
原创
博文更新于 2025.03.13 ·
1729 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

大模型时代,你的AI分身已上线!AutoGen定制智能体保姆级教程,动动手指就搞定!

`GeminiAssistantAgent`:我们创建了一个名为`GeminiAssistantAgent`的类,它继承自`BaseChatAgent`。* 我们创建了两个AI实例:`primary_agent`(主要助手)和`gemini_critic_agent`(评论员)。* `on_messages`:处理消息的核心逻辑,接收消息历史,调用Gemini模型生成回复。* `__init__`:初始化方法,设置了AI的名称、描述、模型、API密钥和系统消息。
原创
博文更新于 2025.03.12 ·
898 阅读 ·
13 点赞 ·
0 评论 ·
14 收藏

DeepSeek模型微调揭秘,小白也能轻松上手!

但要让它们在特定领域更专业,比如成为医学专家,就需要“补课”——这就是“微调”!"labels": torch.stack([torch.tensor(d["input_ids"]) for d in data]).to(device) # 使用input_ids作为labels。这时候,如果你给他一堆医学专业书籍和病例,让他集中学习,他就能迅速成为医学领域的专家!output_path = r"你的保存微调后的模型路径" # 微调后模型保存路径。(就像微调后的模型,专注解决特定领域问题)
原创
博文更新于 2025.03.11 ·
884 阅读 ·
19 点赞 ·
0 评论 ·
6 收藏

Manus开源了,OpenManus开源炸锅,deepseek加持,做一个自己的ai员工(附教程)

除了OpenManus,团队还开源了OpenManus-RL,一个专注于用强化学习(RL)优化LLM智能体的项目。这意味着,你的AI员工不仅能完成任务,还能不断学习、自我进化!它基于当下最火的大语言模型(LLM),能帮你把各种天马行空的创意,变成实实在在的AI应用!甚至,它还能帮你做SEO优化网站,让你的网站排名蹭蹭蹭往上涨!你有没有想过,如果能有一个24小时待命、任劳任怨、还不用发工资的员工,那该多好?更炸裂的是,这个项目背后的大佬团队,来自MetaGPT等顶级组织,人家只用了。在评论区分享你的创意吧!
原创
博文更新于 2025.03.10 ·
1127 阅读 ·
12 点赞 ·
0 评论 ·
14 收藏

3分钟搞定一周工作量!用AI做了一个自己的员工,“文章分析师”智能体,(从零搭建,附源码运行)

以前,写一篇文献综述,我得经历“找文献-筛文献-读文献-做笔记-写报告”的漫长折磨,一周能憋出一篇就不错了。你可以把它想象成一个超级AI助手,能自主思考、规划、执行任务,还能调用各种工具,简直就是开了挂的“打工人”!:`google_search` 和 `arxiv_search`,分别用于谷歌搜索和arXiv搜索。其实,我用的就是一个叫AutoGen的开源框架,它能让你像搭积木一样,轻松创建自己的AI智能体!* 分享本文到朋友圈,截图发到评论区,抽一位幸运儿,送价值99元的AI课程!
原创
博文更新于 2025.03.09 ·
907 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

从零搭建“公司研究分析师”,让智能体为自己打工!AutoGen智能体(附运行原代码)

它就像一个“乐高积木”,你可以通过简单的配置,将不同的AI模型(如GPT-4、Gemini等)和工具(如搜索引擎、数据分析工具等)组合起来,创造出各种各样的智能体,帮你自动完成任务!* `team.run_stream(task="使用中文撰写美国航空公司的财务报告")`:启动任务,让智能体团队自动完成财务报告!pip install ...`,跟着做就行)。* `stock_analysis_agent`:负责分析股票数据的智能体。* `team`:将三个智能体组成一个团队,让它们协同工作。
原创
博文更新于 2025.03.08 ·
806 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

深入浅出的理解deepseek类大模型(附运行代码)

这个专家,就像我们人类一样,需要先“看”到文字,然后才能理解文字的意思,最后才能回答问题或者生成新的文字。整个 Qwen2 模型就像一个。Python 代码,就是在。
原创
博文更新于 2025.03.07 ·
2955 阅读 ·
97 点赞 ·
0 评论 ·
8 收藏
加载更多