黄晓魚
码龄8年
求更新 关注
提问 私信
  • 博客:132,479
    动态:27
    132,506
    总访问量
  • 190
    原创
  • 4,491
    粉丝
  • 31
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
加入CSDN时间: 2018-04-14

个人简介:视觉工程师/编曲/建模/游戏设计

博客简介:

linux_huangyu的博客

查看详细资料
个人成就
  • 获得815次点赞
  • 内容获得17次评论
  • 获得521次收藏
  • 代码片获得1,608次分享
  • 博客总排名18,077名
  • 原力等级
    原力等级
    5
    原力分
    1,774
    本月获得
    18
创作历程
  • 11篇
    2025年
  • 150篇
    2024年
  • 27篇
    2023年
  • 2篇
    2022年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 点云处理 PCL库 Open3D库 Point++模型使用
    付费
    97篇
  • halcon3d PCL点云处理 深度神经网络
    付费
    120篇
  • oepncv-mediapipe-手势识别,人脸识别
    付费
    2篇
  • halcon深度学习 目标检测 语义分割
    付费
    6篇
  • 3D视觉
    4篇
  • OPENCV YYDS
    1篇
  • Pyside
    1篇
  • Halcon从入门到入门
    38篇
  • Unity2D学习笔记
    1篇
  • C++学习笔记
    12篇
  • UE4学习笔记
    3篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • Python
    pythonconda
  • 编程语言
    c++c#
  • 人工智能
    计算机视觉机器学习深度学习神经网络
  • 游戏
    unityblenderue5
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

39人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

双目三维重建-4三维重建

本文介绍了基于立体视觉的三维重建过程。首先对左右相机图像进行立体矫正,转换为单通道后检测棋盘格角点。通过三角测量(triangulatePoints)计算三维坐标,使用Open3D库可视化重建的点云数据,并添加200mm坐标轴作为参考。最后将红色点云保存至D盘根目录。该流程完整展示了从立体图像到三维点云的重建过程。
原创
博文更新于 2025.10.18 ·
275 阅读 ·
8 点赞 ·
1 评论 ·
5 收藏

双目三维重建-3立体矫正

立体矫正是通过调整双目相机图像,使空间中同一物体点在左右图像中位于同一行的处理过程。其理论基础是极线约束,通过cv2.stereoRectify函数实现,需输入相机内参、畸变系数、图像尺寸和RT矩阵等参数。使用CALIB_ZERO_DISPARITY模式可确保光心点投影一致。实际测试显示,矫正后图像对应点确实对齐到同一行,但边缘可能出现黑边。该技术为立体视觉应用提供了精确的图像对齐基础。
原创
博文更新于 2025.10.15 ·
256 阅读 ·
10 点赞 ·
0 评论 ·
2 收藏

双目三维重建-2双目系统标定

双目系统通过两个并排相机模拟人眼,在XY信息基础上增加深度(Z方向)信息。双目标定需要输入标定板三维角点、左右相机的二维像素点及各自内参矩阵和畸变系数。标定输出包括优化后的相机内参、畸变系数、左右相机间的旋转矩阵R和平移向量T,以及本质矩阵E和基础矩阵F。其中内参矩阵和RT矩阵(描述左右相机坐标系转换)是后续应用的关键。标定误差以像素单位衡量,若小于0可能标定失败需检查数据。
原创
博文更新于 2025.10.15 ·
467 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

双目三维重建-1相机标定

本文介绍了双目相机系统的标定方法,重点说明了如何分别标定两个相机的内参和畸变系数。文章详细描述了标定流程:使用棋盘格标定板,同时拍摄左右相机图像;通过OpenCV函数检测和优化角点位置;收集角点数据后进行单相机标定,最终获取并保存每个相机的内参和畸变系数,为后续双目标定做准备。文中还特别强调了图像读取参数设置、角点检测精确化等关键操作细节。
原创
博文更新于 2025.10.13 ·
515 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

OPENCV 基于旋转矩阵 旋转Point2f

摘要:该代码演示了使用OpenCV实现点绕另一个点旋转45度的过程。首先读取背景图片,创建两个初始点p1(350,150)和p2(550,150)。然后以p1为中心点生成45度旋转矩阵,对p2进行坐标变换,得到旋转后的新坐标。最后在原图上绘制三个点(p1、p2和旋转后的点)以及连接线,直观展示旋转效果。代码通过矩阵变换实现几何旋转,并输出旋转后的坐标值,验证了变换的正确性。
原创
博文更新于 2025.09.01 ·
376 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

open3d python 鞋底点云点胶路径识别

本文提出了一种基于点云处理的鞋底点胶路径自动生成方法。首先对输入的鞋底点云进行预处理,包括体素降采样、AABB边界裁剪、统计滤波去噪和DBSCAN聚类。通过将点云投影到二维平面并提取轮廓,获得200个均匀分布的边缘点。然后改进算法在XY平面内沿法线方向搜索最高点,生成初始点胶路径。进一步通过向内偏移处理优化路径位置,并计算各路径点的法向量以指导机械手位姿。实验结果表明,该方法能有效识别鞋底边缘并生成合理的点胶路径,为自动化点胶工艺提供了可靠的技术方案。
原创
博文更新于 2025.08.05 ·
387 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

QssStylesheetEditor 编写查看QSS文件的工具

QssStylesheetEditor 编写查看QSS文件的工具
原创
博文更新于 2025.03.26 ·
334 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Pyside MacOS控件样式

【代码】Pyside MacOS控件样式。
原创
博文更新于 2025.03.26 ·
615 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

本地部署DeepSeek

LLaMA-7B、LLaMA-13B、GPT-NeoX-3B、DeepSeek 中型模型。:LLaMA-30B、LLaMA-65B、GPT-J-6B、DeepSeek 大型模型。:GPT-2 Small、LLaMA-7B(量化版)、DeepSeek 小型模型。:GPT-3(175B)、BLOOM(176B)、DeepSeek 超大型模型。:适合高性能需求的任务,如大规模文本生成、复杂推理、研究实验等。:适合中等规模的任务,如复杂文本生成、对话系统、代码生成等。:适合资源有限的设备,同时保持较高的性能。
原创
博文更新于 2025.02.25 ·
1340 阅读 ·
7 点赞 ·
0 评论 ·
18 收藏

MiniForge 环境安装

pycharm中正确识别这个环境。可以看到环境已经创建好了。
原创
博文更新于 2025.02.25 ·
535 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

HALCON从入门到入门-单目对焦测距-三维重建

对焦测距是一种采用不同光学参数进行拍摄,在一系列物体图像中找出最清晰的像,并根据几何光学成像原理来计算物体深度的方法。其基本原理是,当镜头对焦于某一物体时,该物体在图像传感器上形成的像最为清晰。通过比较不同焦点位置下的图像清晰度,可以确定物体与相机之间的距离。不同高度上拍摄几十张图像。
原创
博文更新于 2025.02.11 ·
445 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

点云库(PCL)1.11.1环境下三维点云处理与可视化程序开发-基于VS2022

发布资源 2025.02.06 ·
txt

使用mediapipe库 推测手指关节位置

MediaPipe是一个由Google开发的开源项目,旨在提供一个开源的、跨平台的常用机器学习(Machine Learning)方案。
原创
博文更新于 2024.11.22 ·
367 阅读 ·
12 点赞 ·
0 评论 ·
1 收藏

部署mediapipe 问题解决

底层依赖库没有安装尝试安装。
原创
博文更新于 2024.11.22 ·
375 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

halconDL 语义分割 推测 infer模块 部署到CPP

Halcon的语义分割功能是其图像处理与计算机视觉工具箱中的一项重要技术,它基于深度学习的先进算法,实现了对图像中每个像素的精确分类。这一功能不仅能够识别图像中的不同物体,还能进一步理解这些物体的属性和它们之间的关系,为图像分析和理解提供了更深层次的语义信息。在Halcon的语义分割中,通过训练深度学习模型,系统能够学习到图像中各种物体的特征表示,这些特征包括但不限于颜色、纹理、形状和空间关系等。
原创
博文更新于 2024.11.21 ·
215 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

halcon CPP环境搭建

创建CPP工程,这里使用vs。
原创
博文更新于 2024.11.21 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

halconDL 语义分割 预处理 preprocess

简介Halcon是一款功能强大的机器视觉软件,支持深度学习的训练和推理,能够帮助开发者和研究者在实际应用中实现高性能的语义分割任务。以下是对Halcon深度学习语义分割功能的详细介绍:一、语义分割基本概念语义分割(Semantic Segmentation)是图像处理和机器视觉的一个重要分支,其目标是精确理解图像场景与内容。具体而言,语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。例如,在一张照片中,属于人的像素部分会被划分成一类,属于摩托车的像素会被划分
原创
博文更新于 2024.11.20 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

halconDL 语义分割 评估 eval

Text[|Text|]:=“这有助于理解模型中哪些类是容易的,哪些类是困难的”Text[|Text|]:='此示例涵盖了第3部分:“训练模型的评估”。Text[|Text|]:='对角线上的非零条目和其他所有地方的零条目。Text[|Text|]:='首先,我们计算“测试”分割的评估度量。Text[|Text|]:='下面,您可以看到整体像素精度的计算。因此,这一措施非常适合”Text[|Text|]:='下面,您可以看到类IoU的计算示例'Text[|Text|]:='请注意,我们将保存内存优化模型'
原创
博文更新于 2024.11.20 ·
94 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

halconDL 语义分割 推测 infer

Halcon是一款功能强大的机器视觉软件,支持深度学习的训练和推理,能够帮助开发者和研究者在实际应用中实现高性能的语义分割任务。以下是对Halcon深度学习语义分割功能的详细介绍:一、语义分割基本概念语义分割(Semantic Segmentation)是图像处理和机器视觉的一个重要分支,其目标是精确理解图像场景与内容。具体而言,语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。
原创
博文更新于 2024.11.20 ·
349 阅读 ·
10 点赞 ·
0 评论 ·
1 收藏

halconDL 语义分割 训练 Train

Halcon是一款功能强大的机器视觉软件,支持深度学习的训练和推理,能够帮助开发者和研究者在实际应用中实现高性能的语义分割任务。以下是对Halcon深度学习语义分割功能的详细介绍:一、语义分割基本概念语义分割(Semantic Segmentation)是图像处理和机器视觉的一个重要分支,其目标是精确理解图像场景与内容。具体而言,语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。
原创
博文更新于 2024.11.11 ·
241 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏
加载更多