AI大模型入门学习路线
码龄5年
求更新 关注
提问 私信
  • 博客:2,967,418
    社区:2
    视频:5
    2,967,425
    总访问量
  • 1,984
    原创
  • 554
    排名
  • 8,545
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-02-23
博客简介:

libaiup的博客

查看详细资料
个人成就
  • 获得25,223次点赞
  • 内容获得444次评论
  • 获得29,617次收藏
  • 代码片获得64,416次分享
  • 原力等级
    原力等级
    9
    原力分
    15,301
    本月获得
    196
创作历程
  • 830篇
    2025年
  • 381篇
    2024年
  • 603篇
    2023年
  • 173篇
    2022年
成就勋章
TA的专栏
  • AI绘画
    542篇
  • SD应用教程
    524篇
  • AI大模型
    51篇
  • 大模型教程
    51篇
  • AI智能体
    1篇
  • coze
    1篇
  • AIGC
    2篇
  • Stable Diffuison
    1篇
  • 网络安全
    111篇
  • python
    613篇
  • 编程语言
    276篇
  • Python入门
    390篇
  • python基础
    73篇
  • 程序员
    182篇
  • python爬虫
    39篇
  • python笔记
    5篇
  • 找工作
    1篇
  • 转行
    4篇
  • python程序员
    18篇
  • python工作
    8篇
  • python前景
    8篇
  • Python小程序
    1篇
  • 学习路线
    8篇
  • 面试
    1篇
  • python安装
    1篇
  • Java相关
    1篇
  • Anaconda
    1篇
  • csv
    1篇
  • Java
  • 阿里巴巴

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

TA的推广
兴趣领域 设置
  • Python
    python
  • 编程语言
    python
  • 人工智能
    人工智能
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

北航计算机硕士斩获3份大模型offer,薪资86~94W!大模型人才稀缺,附700篇论文+实战课程

北航计算机硕士凭借大模型技术斩获3份高薪offer(86~94W),凸显大模型人才市场稀缺性。文章提供大模型论文合集、期刊解读及12节实战课程,涵盖RAG、LoRA、多模态等前沿技术,助力科研人员和开发者系统掌握大模型知识体系,扫码可免费领取学习资源。
原创
博文更新于 13 小时前 ·
571 阅读 ·
14 点赞 ·
0 评论 ·
9 收藏

大模型部署完全指南:从网页版到私有化,一篇搞定!建议收藏学习

文章详细介绍了大模型的四种使用方式和部署方案:网页版、API接口调用、企业专属大模型训练和私有化部署,并分析了各自的适用场景。文章强调,私有化部署虽然理想,但成本高昂、更新困难、技术门槛高,除非有强科研或数据安全需求,否则不推荐普通企业或个人进行,建议优先考虑API调用或与厂商合作专属解决方案。
原创
博文更新于 13 小时前 ·
623 阅读 ·
12 点赞 ·
0 评论 ·
6 收藏

大模型时代,人类如何守住不可替代性并抓住新机遇

本文探讨了在大模型时代如何避免被AI替代的两大策略:一是守住人类独有的情感与创造力,这些是AI无法复制的核心价值;二是拥抱AI带来的新机遇,如AI大模型应用开发工程师和训练师等高薪岗位。文章强调AI是人类战友而非对手,它淘汰的是重复劳动,不会淘汰有温度、有想法的人。维持不可替代性的关键在于守住人类独特价值,同时主动学习驾驭AI。
原创
博文更新于 13 小时前 ·
522 阅读 ·
17 点赞 ·
0 评论 ·
22 收藏

2025大模型人才缺口500万,这三类人最吃香!AI程序员薪资翻倍指南

2025年AI人才市场呈现高需求与高缺口并存态势,相关岗位同比增长10倍,但人才缺口仍达500万。最抢手岗位包括大模型算法工程师、生成式AI工程师和搜索算法工程师。企业最欢迎三类人才:具备全流程落地能力的技术人、AI+行业的复合型人才以及技能匹配度高的新人。求职者应关注细分TOP公司和AI独角兽企业,利用专业招聘渠道提高成功率。
原创
博文更新于 13 小时前 ·
360 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

大模型显存计算:手把手教你计算Llama 70B所需显存

文章详细介绍了大模型(以Llama 70B为例)推理所需GPU显存的计算方法,包括模型权重显存(140GB)、KV Cache显存(800GB)和其他开销(94GB),总计约1TB。文章强调KV Cache是显存占用的主要部分,受并发用户数和上下文长度影响显著。作者提供了优化建议,如单用户场景可减少至250GB,缩短上下文可降低至400GB,并指出实际可通过PagedAttention、量化等技术进一步优化显存使用。
原创
博文更新于 13 小时前 ·
554 阅读 ·
22 点赞 ·
0 评论 ·
21 收藏

AI大模型学习全攻略:从入门到精通的7个阶段详解,非常详细收藏我这一篇就够

本文提供了AI大模型学习的完整路线图,从数学编程基础到机器学习、深度学习,再到大模型理论与实践应用。文章详细介绍了各阶段学习资源与项目实践,并提供了从基础到应用开发的七个阶段学习内容,帮助读者系统掌握AI大模型知识,提升实战能力。
原创
博文更新于 2025.12.16 ·
1400 阅读 ·
33 点赞 ·
0 评论 ·
15 收藏

转型必看!AI产品经理核心能力全解析,建议收藏学习

AI产品经理需具备AI原生思维,接受不确定性,重视提示交互和数据飞轮。核心能力包括:懂大模型技术边界、设计AI交互体验、建立数据评估闭环。同时需有想象力解构应用场景,定义清晰成功标准。转型者应深度使用AI工具、建立技术知识图谱、从小场景实践并构建评估思维。AI产品与传统产品不同,需完成认知升维,接受概率性涌现,定义人机分工边界,持续优化数据-模型-反馈循环。
原创
博文更新于 2025.12.16 ·
694 阅读 ·
20 点赞 ·
0 评论 ·
13 收藏

大模型实战指南:从开发训练到高效推理部署的技术全解析

大模型开发与部署全流程技术综述 本文系统阐述了大模型从开发训练到推理部署的全流程关键技术。在训练环节,重点分析了数据并行、张量并行、流水线并行等分布式策略及系统级优化方法。针对推理部署,详细介绍了模型压缩(稀疏化、量化、蒸馏等)、推理引擎优化和服务部署策略。文章强调了深度学习框架在实现软硬件协同优化中的核心作用,通过自动计算图融合、自适应混合并行等技术提升效率。同时指出大模型对硬件规格的特殊要求,以及通过标准化接口实现异构硬件适配的重要性。这些技术创新显著降低了应用成本,推动了大模型在各行业的落地应用。
原创
博文更新于 2025.12.16 ·
607 阅读 ·
14 点赞 ·
0 评论 ·
8 收藏

谷歌Gemini Deep Research Agent横空出世,成本仅GPT-5 Pro 10%却性能相当,开发者福音!

谷歌推出基于Gemini 3.0的Deep Research Agent,性能媲美GPT-5 Pro但成本仅为其10%。该智能体在多项基准测试中表现优异,采用并行探索策略时准确率可从72.2%提升至89.5。谷歌通过API向开发者开放此能力,支持私有文档与全网数据混合分析,提供结构化报告与溯源引用,助力开发者构建下一代应用,重塑高门槛行业生产力。
原创
博文更新于 2025.12.16 ·
905 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

大模型训练数据全攻略:从数据处理到高质量数据集构建(建议收藏)

本文详细介绍了大模型训练数据的种类、处理流程和特点。通过高质量数据构建可大幅降低训练数据规模,阐述了质量过滤、冗余去除、隐私消除等预处理方法,以及人工标注数据的类型和用途。介绍了SFT、RM、PPO三类数据集的准备,自动化算法和多模态数据处理的应用,以及常用公开数据集。
原创
博文更新于 2025.12.16 ·
861 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏

AI产品经理转型大模型全攻略:从入门到精通的104G学习资源包+7阶段实战路线

《AI产品经理转型大模型领域的实用指南》摘要:本文系统阐述AI产品经理转做大模型产品经理的必备技能与转型路径。核心内容包括:1.评估技术理解、数据分析、用户洞察等5大基础能力;2.提供大模型原理学习、应用场景创造、产品落地的实践方法;3.设计7阶段进阶学习路线,涵盖神经网络原理、Transformer架构等关键技术点;4.推荐104G资源包(论文、工具平台、案例库等)。通过行业分析、用户研究等方法,帮助产品经理找准大模型商业化场景,实现从技术认知到产品落地的完整转型。
原创
博文更新于 2025.12.15 ·
1128 阅读 ·
29 点赞 ·
0 评论 ·
27 收藏

产品经理如何拥抱AI大模型:从入门到实战的全面指南

本文针对产品经理,探讨了在AI大模型时代如何保持竞争力。文章首先强调了产品经理需具备的核心能力,包括理解用户需求、把握市场趋势等;其次详细阐述了AI大模型为产品经理带来的五大价值,如提升用户洞察、实现个性化推荐等;最后提供了系统的大模型学习路径和资源,帮助产品经理掌握AI技术,提升职场竞争力。
原创
博文更新于 2025.12.15 ·
715 阅读 ·
7 点赞 ·
0 评论 ·
23 收藏

DeepSeek V3.2技术深度解析:Midtrain训练、RL鲁棒性与Agent任务合成全攻略

文章总结了DeepSeek V3.2模型在mid train和后训练过程中的关键技术工作。包括使用低学习率进行continued pre-training提升长文本能力;通过专家蒸馏和GRPO优化(K3 Estimator、Off-Policy Sequence Mask等)提高RL稳定性;以及大尺度Agent任务合成Pipeline,通过1827个任务环境提升模型多领域任务表现。这些技术引领LLM发展方向,值得深入学习。
原创
博文更新于 2025.12.15 ·
656 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

GPT-5.2震撼发布:职场AI新标杆,效率提升40%,收藏必学!

OpenAI发布GPT-5.2模型应对Google Gemini竞争压力,推出三个版本:Instant(快速响应)、Thinking(复杂任务)和Pro(高精度)。GPT-5.2 Thinking在44个职业任务中达到或超越人类专家水平,编程能力创新高,幻觉率降低30%,长文本处理接近完美,数学科学能力显著提升。尽管API价格上涨,但因效率提高实际成本可能降低。同时OpenAI与迪士尼达成合作,将推出"成人模式"内容。此次升级聚焦职场实用功能,强调经济价值创造能力。
原创
博文更新于 2025.12.15 ·
802 阅读 ·
21 点赞 ·
0 评论 ·
13 收藏

GPT-5.2超强性能解析:程序员必备的大模型学习资源

OpenAI在成立十周年之际发布GPT-5.2系列模型,包含Instant、Thinking和Pro三个版本,在专业工作、长文本处理、编程等方面实现突破性进展。该系列在多项基准测试中刷新纪录,首次达到"人类专家水平",尤其在电子表格、演示文稿等办公场景表现突出,效率比专家快11倍。GPT-5.2还展现出更强的视觉理解、工具调用和抗幻觉能力,支持超长文本(256k tokens)处理,成为程序员和专业人士的高效助手。这一重大升级巩固了OpenAI在AI领域的领先地位。
原创
博文更新于 2025.12.15 ·
786 阅读 ·
24 点赞 ·
0 评论 ·
22 收藏

小白也能上手:千问大模型辅助SPSS数据分析实战指南

文章展示了利用千问大模型辅助SPSS数据分析的完整流程,包括数据预处理和跨国比较分析。作者强调AI助手功能日益强大,能帮助人们从执行者向管理者转变,但指出扎实的数据分析基础和实战经验至关重要。AI具备强大的文本、编程和作图能力,在数据分析领域有广阔的应用前景。
原创
博文更新于 2025.12.12 ·
803 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏

【强烈收藏】大模型智能体架构全解析:3种工作流+4种智能体模式构建实战

本文全面介绍了AI智能体的设计模式,包括3种工作流模式(提示链、路由、并行化)和4种智能体模式(反思、工具使用、规划、多智能体)。文章详细分析了何时使用智能体方案,强调了简单优先原则和成本效益权衡。工作流适合步骤明确的任务,而智能体则适用于需要灵活性和适应性的场景。文章还探讨了如何处理不确定性,并指出这些模式可灵活组合,实际应用中需通过实证评估持续优化。
原创
博文更新于 2025.12.12 ·
1021 阅读 ·
20 点赞 ·
0 评论 ·
20 收藏

大模型学习黄金书单:从入门到实战的完整路径

文章分享了大模型学习必读书单,强调自学不能仅靠提示词和API。推荐四类书籍:编程基础(Python)、深度学习原理、大模型技术基础和应用开发。这些书籍形成完整学习路径,帮助读者从理论到实践真正理解并应用大模型,少走弯路,实现从新手到高手的进阶。
原创
博文更新于 2025.12.12 ·
830 阅读 ·
32 点赞 ·
0 评论 ·
17 收藏

InfLLM:零成本扩展大模型上下文长度的高效内存机制【必收藏】

InfLLM提出了一种无需再训练的长上下文处理方法,通过Memory Units和Sliding Window分别建模远距离和局部上下文。它将历史KV Cache分块存储,选取代表性tokens,并设计高效的检索和LRU缓存机制,仅加载相关memory units至GPU,显著降低显存占用。实验表明,该方法能处理100K长度的序列,仅需26G显存,且性能优于现有方案。InfLLM的创新在于:1) 流式处理长文本;2) 高效检索机制;3) 位置编码优化,为LLMs处理超长文本提供了经济高效的解决方案。
原创
博文更新于 2025.12.12 ·
967 阅读 ·
13 点赞 ·
0 评论 ·
14 收藏

GPT-5.2 vs Gemini 3:OpenAI反击战背后的AI技术演进与学习路径

OpenAI即将推出GPT-5.2模型(内部代号"Garlic"),专门针对谷歌Gemini 3进行优化。GPT-5.2在编程和逻辑推理任务上表现超越Gemini 3,拥有更强的长程任务执行能力。OpenAI还面临算力资源紧张的问题,甚至可能暂停AGI长期目标以应对竞争。谷歌也取消了Gemini API免费层来释放算力支持新模型。这场AI技术大战预示着大模型技术的重要发展方向,值得程序员和技术爱好者关注学习。
原创
博文更新于 2025.12.12 ·
848 阅读 ·
16 点赞 ·
0 评论 ·
27 收藏
加载更多