可以预见的未来(连续剧-1)

本文介绍了GOOGLE推出的3D绘图软件及其在建筑设计中的应用,用户可以将模型投稿至3D模型库进行共享。探讨了这种技术在制造业中的重要性和在普通用户间的普及性,并指出其作为内容共享平台的商业模式。

3D打印

3D打印不算什么热门话题了,但为这个时代的到来所做的准备已经是可以预见的。GOOGLE在其网站的地理产品的首要位置设置了一个“3D绘图软件,在电脑上进行建筑设计”的重要功能。通过网址浏览,该产品是由Trimble导航公司(天宝公司)推出的,而且目前的使用版本是免费提供在线下载的。也许你也可以成为建模师哦!

http://www.sketchup.com/intl/zh-CN/index.html

http://www.sketchup.com/intl/zh-CN/index.html

在深入了解的过程中发现,其推出的服务是:“任何人都可将其模型投稿给 3D 模型库(http://sketchup.google.com/3dwarehouse/)。如果您在做一些您引以为荣的事情,如果您有产品需要销售,或者您希望通过发布作品示例来为您的建模服务打广告,您可以在这里进行。”

又是一个类似百度文库或知道的站。在提供共享平台后免费的大量收集小白们的劳动成果,只发放几个或几十个只可以在网上炫耀的金币就成了“网站的内容”。再没有比这更划算的买卖了,是吧?(只是稍微想一想就觉得好笑)

当然,就这种技术来看。对于制造业中的建模工艺来说这是个不能轻视的技术,但对于一般人而言却没什么吸引力。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值