62、网络攻击中的代码利用与后门技术

网络攻击中的代码利用与后门技术

1. 巩固成果与外国代码

在网络攻击中,巩固对目标资源的控制是攻击者的重要目标之一。为了实现这一目标,攻击者会利用现有的操作系统和网络设施,同时也会引入“外国代码”。“外国代码”主要包括特洛伊木马、后门程序和根工具包等,其目的是在目标系统或网络环境中建立并维持隐蔽存在,绕过现有的安全控制,实现对系统的持续访问。

1.1 SNMP 侦察工具

SNMP(简单网络管理协议)侦察工具可帮助攻击者收集目标系统或网络的相关信息。以下是一些常见的 SNMP 侦察工具:
| 工具(作者) | 来源 | 描述 |
| — | — | — |
| Sncs(Delorean) | http://packetstormsecurity.nl/sniffers/ | SNMP 社区名称嗅探器 |
| snmpbrute | http://www.securiteam.com/tools/5EP0N154UC.html | 用于暴力破解 SNMP 社区字符串的工具 |
| snmputil | Windows NT 和 Windows 2000 资源工具包 | 允许对运行 SNMP 服务的主机进行 SNMP 查询 |
| Snmpscan(Knight, phunc) | http://packetstormsecurity.org | 扫描运行 SNMP 的主机或路由器,查找常见社区(密码) |
| snmpsniff | http://www.AntiCode.com/archives/network-sniffers/snmpsniff-1_0.tgz | SNMP 嗅探器 |
| s

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值