【ROS】源码分析-消息订阅与发布
本文通过`NodeHandle::subscribe`和`Publication::publish()`源码作为入口,来分析PubNode、SubNode之间是网络连接是如何建立的,消息是如何发布的,topic队列到底是如何实现的。
SSH.M
OpenCV
httpclient
dos/bat
MySQL
VC++
ImageProcess
Java
ASM
Android
Big Data Technology
电脑维护和办公
Project Management
负载均衡
Linux
Algorithm
项目管理
公司管理
ffmpeg
VB
日志分析
google chrome
WEB
系统设计
QUOTATION
Error
bat
git
shell
dubbo
spring
logging
log4j
docker
操作系统
gcc
proxy
ROS
flume
elasticSea
kibana
efk
es
nginx
jvm
logback
springmvc
supervisor
spring-jms
google
google
springboot
exception
swagger
centos7
tomcat
Reflection
jdk8
invokedyna
cache
maven
phantomjs
数据安全/网络通信
spring-boot
DevOps
数据结构 TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 6
TA参与的活动 0

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
