laagyzz
码龄8年
求更新 关注
提问 私信
  • 博客:67,219
    67,219
    总访问量
  • 17
    原创
  • 30
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:澳大利亚
加入CSDN时间: 2017-09-28
博客简介:

laagyzz的博客

查看详细资料
个人成就
  • 获得93次点赞
  • 内容获得0次评论
  • 获得143次收藏
  • 博客总排名2,282,470名
创作历程
  • 4篇
    2018年
  • 13篇
    2017年
成就勋章
TA的专栏
  • 软件学习
    1篇
  • 全球视野
    2篇
  • 机器学习
    3篇
  • 学习笔记
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习神经网络pytorch
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

cs231n 课程笔记 学习笔记#002

最优化 原文:http://cs231n.github.io/optimization-1/ 参考翻译:https://zhuanlan.zhihu.com/p/21360434?refer=intelligentunit最优化是寻找能使得损失函数值最小化的参数W的过程。与随机搜索和随机本地搜索相比,显然跟随梯度是最好的策略。梯度计算两种方法:数值梯度法(较...
原创
博文更新于 2018.09.17 ·
667 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「PayPal 黑帮」老大 Peter Thiel

Peter Thiel,当今IT界最传奇的人之一,硅谷最强天团「Paypal 黑帮」的核心人物,天才投资人和创业家,《从0到1》一书的作者。如果你将来打算成为一个创业者,那么你一定要知道 Peter Thiel 是谁。如果你不打算创业,你最好也知道知道 Peter Thiel 是谁。
原创
博文更新于 2017.10.18 ·
1697 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 语言发展历史

Python 是一门简洁而又强大的编程语言。相信即使是刚接触编程的同学也一定听说过「人生苦短,我用 Python(Life is short. You need Python.)」这句话。目前人工智能越来越火,Python 凭借它扩展性强、第三方库丰富和免费开源等特点,在机器学习、数据挖掘、人工智能等领域有着很大优势,前景非常值得期待。
原创
博文更新于 2017.12.14 ·
11171 阅读 ·
5 点赞 ·
0 评论 ·
16 收藏

python、Matlab求定积分

python求定积分计算from sympy import *x = symbols('x')print(integrate(sin(2*x)/(1+x**2), (x, 0, 3)))sympy库中integrate函数integrate(f, (x, lower_bound, upper_bound))# f-函数,x-变量,lower_bound-下限,upper_boun...
原创
博文更新于 2018.12.17 ·
1454 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

cs231n 课程笔记 学习笔记#001

线性分类 原文:http://cs231n.github.io/linear-classify/ 参考翻译:https://zhuanlan.zhihu.com/p/20918580?refer=intelligentunit概述:这种方法用来解决图像分类问题。并且可以自然的延伸应用到神经网络/卷积神经网络上。由评分函数和损失函数组成。可转化为最优化问题,最优化过程是通过更...
原创
博文更新于 2018.09.17 ·
380 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

scikit-learn Tutorial 学习笔记#001

参考:An introduction to machine learning with scikit-learn机器学习研究什么一般来讲,一个学习问题(learning problem)就是通过研究一些已知样本数据来预测未知数据的性质的问题。学习问题可以大致被分为两类:监督学习 supervised learning 和非监督学习 unsupervised learning 。...
原创
博文更新于 2018.09.14 ·
1715 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

我为什么要转到软件工程专业

作为一个转专业的降级生,从计划转专业到现在,总是会听到有人问,“为什么想要转专业啊”。而我每每只能尴尬一笑,然后搪塞过去——不是别的,只是觉得考虑实在太多了,很难一言以蔽之。所以在这个人技术博客的第一篇,我想我有必要再好好梳理下我想要转专业的理由,作为今后走在技术之路上前进的动力和方向。
原创
博文更新于 2018.09.09 ·
25764 阅读 ·
76 点赞 ·
0 评论 ·
99 收藏

字符版本贪吃蛇游戏

这篇博客介绍了我是怎样通过自顶而下的方法一步步开发出一个字符版本的贪吃蛇游戏,并利用此前实现的智能蛇开发出全新的人机大战贪吃蛇。会动的蛇首先我们先实现一条能根据输入移动的蛇。 这条蛇的伪代码如下:输出字符矩阵 WHILE not 游戏结束 DO ch=等待输入 CASE ch DO ‘A’:左前进一步,break ‘D’:右
原创
博文更新于 2017.12.27 ·
497 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

在 Linux 下实现智能贪吃蛇

本周的任务是在 Linux 环境下编写代码,实现一只智能的贪吃蛇,使其能通过算法具有 “感知 - 决策 - 行动” 的能力。
原创
博文更新于 2017.12.27 ·
2104 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

IT 与风投

风险投资(Venture Capital Investment, or VC)是一种以高风险换取高回报的非常规投资方式。对 IT 行业来说,风投作为幕后推手,对行业的发展起到了至关重要的作用。可以说没有风投,就没有今天 IT 行业的辉煌。尤其是在全球 IT 业的中心硅谷,在创造了无数科技公司神话的同时,也创造出另一种神话——投资的神话。
原创
博文更新于 2017.12.21 ·
705 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

谷歌网的一些伦理风险行为收集

「不作恶」(Don’t be evil)是 Google 公司著名的口号,这让人在潜意识里对这家超级公司的产品总是多一分信任。在当今互联网尤其是中文互联网的语境下,相比于百度等其他搜索引擎,Google 似乎代表着「靠谱」「可信」。然而谷歌真的做到了「不作恶」吗?本文收集了谷歌网的一些伦理风险行为,读者可以自己作出评判。
原创
博文更新于 2017.12.13 ·
3790 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

「自顶向下,逐步求精」

A top-down approach is essentially the breaking down of a system to gain insight into its compositional sub-systems in a reverse engineering fashion. –Wikipedia自顶向下设计是一种分析问题的方法,可以被应用在面向过程的编程中。
原创
博文更新于 2017.11.28 ·
570 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

用 Construct 2 进行游戏设计与制作

软件的开发要经历策划,分析与设计,实现,测试与发布这几大基本步骤。作为软件工程学生的我们,现在虽然编程能力不够,但仍可以通过 Construct 2 这个无需打码的游戏开发软件来体验一下整个开发的过程。
原创
博文更新于 2017.11.19 ·
597 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

诺威格定律与基因决定定律

IT 行业有许许多多有意思的规律。比如著名的摩尔定律和安迪-比尔定律,就是两条从产业角度观察得到的 IT 定律,而「70-20-10」定律,则是关于 IT 市场的一个规律。今天我们主要来介绍一下诺威格定律和基因决定定律,它们是从公司的角度,为公司的发展提出的规律。
原创
博文更新于 2017.11.17 ·
4364 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

用 python3 处理文本数据集

要进行机器学习,先要有数据。数据集处理是机器学习的基础。本文将介绍如何利用 python 自带的 csv 模块进行一些简单的数据集处理。
原创
博文更新于 2017.11.01 ·
8998 阅读 ·
4 点赞 ·
0 评论 ·
26 收藏

我的电路实践

用 autodesk circuits 进行在线电路实践
原创
博文更新于 2017.11.01 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Construct 2 游戏制作软件学习

Construct 2 游戏制作软件学习Construct 2 是一款图形化界面的 2D 游戏制作引擎。其最大的特点(或者说 Slogan)即不需编程基础便可制作游戏。软件分为免费版和个人版,作为新手的我们,先来快速体验一下免费版中的一些基本功能吧!
原创
博文更新于 2017.10.12 ·
1005 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多