knaha
码龄7年
求更新 关注
提问 私信
  • 博客:232,662
    问答:507
    233,169
    总访问量
  • 59
    原创
  • 66
    粉丝
  • 36
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2019-04-07
博客简介:

knaha的博客

查看详细资料
个人成就
  • 获得130次点赞
  • 内容获得32次评论
  • 获得694次收藏
  • 代码片获得531次分享
  • 博客总排名605,484名
创作历程
  • 2篇
    2021年
  • 20篇
    2020年
  • 64篇
    2019年
成就勋章
TA的专栏
  • 计网
    1篇
  • DataBase
    1篇
  • Matlab
    3篇
  • 信息隐藏
    3篇
  • Qt
    4篇
  • DataStructure
    2篇
  • c basic
    8篇
  • tips
    9篇
  • 练习
    7篇
  • error
    5篇
  • project
    4篇
  • python
    15篇
  • Linux
    15篇
  • math
    1篇
  • 算法
    9篇
  • CTF
    1篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 人工智能
    tensorflownlp
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Linux---挂载+eCryptFS 加密文件和目录实验

企业级加密文件系统 eCryptfs 详解eCryptfs 是一个功能强大的企业级加密文件系统,通过堆叠在其它文件系统之上(如 Ext2, Ext3, ReiserFS, JFS 等),为应用程序提供透明、动态、高效和安全的加密功能。一、将/test111挂载到/private1.安装ecryptfsapt-get install ecryptfs-utils2.创建目录private作为挂载点mkdir -p /private3.创建一个目录并新建文件,挂载到private下
原创
博文更新于 2021.05.28 ·
1357 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

以太网---数据链路层--MAC子层--LLC子层

以太网 Ethernet是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。定义:局域网的一种 发源:xerox(施乐) 创建时间:1980以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理
转载
博文更新于 2021.01.02 ·
8782 阅读 ·
8 点赞 ·
0 评论 ·
29 收藏

日语动词变形总结

整理自《新版中日交流标准日本语》(第二版),部分变形记法参照新东方唐盾,因为盾盾桑的记法更容易记忆。目录序号标日语法术语学校语法术语1基本形终止形,连体形2ます形未然形+助动词“ます”3て形连用形+接续助词“て”4ない形未然形+助动词“ない”5た形连用形+助动词“た”6意志形未然形+助动词“う/よう”7ば形...
转载
博文更新于 2020.02.16 ·
2058 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

构建程序---c程序设计现代方法

Chap 15一、头文件#include指令告诉预处理器打开指定的文件,并把此文件的内容插入到当前文件中• 格式1 #include <文件名>用于属于c语言自身库的头文件。搜寻系统头文件所在的目录(或多个目录)不要再包含自己编写的头文件时使用尖括号。• 格式2 #include “文件名”用于所有其他头文件,也包含任何自己编写的文件。先搜索当前目录,然后搜寻系统...
原创
博文更新于 2019.05.03 ·
327 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CSDN如何转载他人文章

转载自 龙云尧个人博客。CSDN地址:http://blog.csdn.net/michael753951/article/details/70307704个人blog地址:http://yaoyl.cn/csdn_ru_he_zhuan_zai/本来我一直不会在csdn中转载他人的文章的,知...
转载
博文更新于 2019.04.09 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MinGW与MSVC编译的区别

这两个编译器的区别:MSVC是指微软的VC编译器MinGW是指是Minimalist GNU on Windows的缩写。它是一个可自由使用和自由发布的Windows特定头文件和使用GNU工具集导入库的集合,允许你在GNU/Linux和Windows平台生成本地的Windows程序而不需要第三方C运行时库。...
原创
博文更新于 2019.12.12 ·
2862 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

C++ 统计数组中元素的出现次数

1.获取数组长度参考 https://www.cnblogs.com/tanrong/p/8516948.html2.统计次数以C++程序为例#include <iostream>using namespace std;template <class T>int getArrayLen(T& array){ //使用模板定义一 个函数ge...
原创
博文更新于 2020.11.23 ·
19265 阅读 ·
4 点赞 ·
4 评论 ·
36 收藏

安装SQL Server2008及SQL Management Studio

1.安装SQL Server 2008官网下载地址 Microsoft® SQL Server® 2008 Express(1)安装 .NET Framework 3.5双击已经下载的SQL Server 2008安装程序,SQL Server 2008需要.NET Framework 3.5的支持,安装程序启动后会检测系统是否已经安装了.NET Framework 3.5,如果没有安装,则弹出要求安装的对话框,单击“确定”按钮,等待一段时间后进入如图所示的“.NET Framework 3.5许
原创
博文更新于 2020.11.09 ·
6493 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

Linux下gdb调试工具的使用

https://www.cnblogs.com/gvlthu23061/p/7316087.htmlhttps://blog.csdn.net/liuhannan111/article/details/73957898
转载
博文更新于 2020.08.01 ·
12046 阅读 ·
4 点赞 ·
2 评论 ·
38 收藏

GCC全过程详解+剖析生成的.o文件

转载自 https://blog.csdn.net/gt1025814447/article/details/80442673 使用GCC编译一个.c文件影藏了哪些过程?GCC四步详解第一步:预处理(也叫预编译)        gcc -E  hello.c  -o he...
转载
博文更新于 2020.07.01 ·
4656 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

partition算法---主元素问题---分治

问题描述主元素是一组n个数中出现次数大于n/2的数。求一个数组中的主元素。partition算法取数组中的一个数,将数组分成两部分(比它大和比它小),再接着在子问题中求解。这是一个常用的算法(以后还会补充)。代码#include <iostream>#include <string>#include <algorithm>using namespace std;int n;int mode(int * array,int l,int r,int
原创
博文更新于 2020.06.07 ·
557 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

整数因子分解---分治递归

问题描述大于1的整数n可以分解为:n = x1 * x2 * … * xn对于给定的正整数n,编程计算n共有多少种不同的分解式,并打印出所有形式。代码(还没能打印出所有形式)#include <stdio.h>#include <stdlib.h>int count;void solve(int n){ int i; if(n == 1){//当商为1时,得到一种分解 //printf("
"); count++; }
原创
博文更新于 2020.06.07 ·
1330 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

删数问题---动态规划

问题描述n个正整数,两端的整数不能删除,其他的正整数可以删除,且其得分是本数同左右邻居相乘的结果,求除两端外的所有数删除后的最大得分。如 1 2 3,删除2后得分是6。递归定义dp[i][j] = dp[i][k] + dp[k][j] + a[i]*a[k]*a[j] )最优值:dp[i][j] = max ( dp[i][j] , dp[i][k] + dp[k][j] + a[i]*a[k]*a[j] )假设最后删掉第k个数得到的结果最大,总分是k左右两端的数之和与最后一次的得分相加。#
原创
博文更新于 2020.06.07 ·
1254 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

computer system 3

//ex6_1#include "stdio.h"void main( ){ short x=0x8543,y=1,z=2; int p=0x12345678,q=3;asm ( "movzwl -0x16(%ebp),%eax
\t" "mov %ax,-0x14(%ebp)
\t" "movswl -0x16(%ebp),%...
原创
博文更新于 2020.05.21 ·
1396 阅读 ·
3 点赞 ·
4 评论 ·
8 收藏

数据结构习题---括号匹配---栈

括号匹配检测程序需求分析输入的形式和输入值的范围;输入一个算术表达式输出的形式;打印括号是否匹配的检测结果程序所能实现的功能;以字符序列的形式从终端输入一串字符,检测其中括号是否匹配,并输出检测结果:“匹配”“不匹配”。测试数据(1)输入表达式 3*(7-2)(2)输入表达式 (2a+2))(6b/2)(3)输入表达式 (20(63+2*(3+6))(4)输入表达式 [(...
原创
博文更新于 2020.04.13 ·
617 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

python练习12(类与对象1)----一次性说完

练习目标学会在某个实例方法中调用其他方法练习要求我们看过Chinese类有这样两个代码案例:一个会打印某个人现在的居住地,一个会打印出生地。下面,我们会通过一个小知识一次性“说完”这两个信息。现在,请你趁热打铁,在代码中新建一个方法,在这个方法中调用实例方法born和live。# 新建一个方法,让实例只要调用一个方法,就能打印出两个信息。# 代码完成后,请运行一下,验证是否成功。...
原创
博文更新于 2020.04.13 ·
3154 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

数字塔---动态规划

问题描述从顶部出发,走到底层,找出一条路径使得数字和最大。代码实现#include <stdio.h>#include <iostream>using namespace std;int dtower(int** a, int** s, int n) { //cout << "dtower" << endl; int ...
原创
博文更新于 2020.04.02 ·
1024 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

斐波那契数列--备忘录--递推--递归

备忘录法#include <iostream>using namespace std;int memo[1000] = { 0 };int fib(int i) { if (i == 1 || i == 2) { memo[i] = 1; return memo[i]; } if (i > 2) { ...
原创
博文更新于 2020.04.02 ·
979 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

C---埃氏筛&分解因子法求最大公因数

埃氏筛法的思想判断当前位置的数是否为素数,如果是,则以该数为因子的所有数均标记为合数(筛除掉 ),判断到√n的位置即可,n为数组总长度。最终剩下的未筛除的数即为素数。#include<iostream>#include<stdio.h>#include<math.h>//sqrt()函数所在头文件using namespace std;#defin...
原创
博文更新于 2020.03.15 ·
533 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

矩阵连乘---动态规划

回顾分治法当问题规模很小时容易求解问题可分为子问题子问题的解可合起来得到问题的解子问题相互独立动态规划适用的问题前三点和分治法相同,不同的是应用动态规划求解的题一般子问题之间不独立,需要辅助空间记录子问题的值来减少求解次数基本步骤:1.找出最优解的性质,并描述其结构特征(最优子结构性质)(由子问题的最优解可以得到整个问题的最优解)2.递归地定义最优值3.以自底向上的方式计...
原创
博文更新于 2020.03.11 ·
497 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多