Allen_Lyb
码龄18年
求更新 关注
提问 私信
  • 博客:1,047,550
    社区:14
    问答:1
    动态:80,368
    视频:1,344
    1,129,277
    总访问量
  • 693
    原创
  • 221
    排名
  • 10,176
    粉丝
  • 1,998
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:内蒙古
加入CSDN时间: 2008-04-07

个人简介:电子工程副高、高级架构师、信息系统项目管理师、华为HCIP、审稿人。主持项目获国家三等奖/自治区一/二等奖各两次,论文(含会议)、软著合计37篇/项,专业领域:数智化医院、量子智算项目及医疗机器人前沿。

博客简介:

AllenLV的博客

博客描述:
国奖获得者,专注数智化医院研究
查看详细资料
个人成就
  • 第五届全国智慧医疗创新大赛优胜奖
  • 获得34,264次点赞
  • 内容获得18,635次评论
  • 获得28,313次收藏
  • 代码片获得364次分享
  • 原力等级
    原力等级
    9
    原力分
    12,555
    本月获得
    642
创作历程
  • 606篇
    2025年
  • 87篇
    2024年
成就勋章
  • 入选《本周创作者榜》第35名
TA的专栏
  • 数智化教程(第三期)
    付费
    62篇
  • 数智化教程(第二期)
    付费
    60篇
  • 数智化教程(第一期)
    付费
    60篇
  • 行业智库分析与报告
    67篇
  • 数智高质量行动季(第一期)
    60篇
  • 医疗高效编程研发
    58篇
  • python
    44篇
  • 数智化医院2024(完结)
    42篇
  • 数智读书笔记
    37篇
  • 量子计算与量子学习
    24篇
  • 数智高质量行动季(第二期)
    23篇
  • 医疗机器人大类
    13篇
  • 医疗智能体分类
    12篇
  • postgresql
    10篇
  • 各类考试心得
    8篇
兴趣领域 设置
  • Python
    pythonpyqtmatplotlibpillow
  • 编程语言
    python
  • 数据结构与算法
    支持向量机
  • 移动开发
    kotlin
  • 人工智能
    数据挖掘机器学习人工智能深度学习神经网络知识图谱语言模型边缘计算视觉检测图像处理数据分析集成学习
  • 网络与通信
    网络安全
  • 硬件开发
    硬件工程硬件架构
  • 设计模式
    建造者模式
  • 运维
    系统架构
  • 教育培训
    c4pythonc4前端c5底层c5全栈
  • 行业数字化
    健康医疗
  • 前沿技术
    vr量子计算智能硬件机器人论文阅读空间计算
  • 开源
    github开源协议开放原子
  • 其他
    经验分享
  • AIGC
    AI编程
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 资源
  • 代码仓
  • 专栏
  • 最近

  • 文章

  • 资源

  • 代码仓

  • 专栏

搜索 取消

面向临床的TCR闭环:在手术室/ICU协同场景与多中心科研中的实证研究(下)

本研究提出并评估了TCR闭环系统在高风险手术室/ICU场景中的应用效果。通过实时定位、预测性调度与数据资产化,系统显著缩短急救设备响应时间(E1)并减少延误事件(S3)。敏感性分析验证了结果的稳健性,过程指标揭示了协同改善机制。研究还监测了系统可能带来的负面效应,并观察到三阶段学习曲线。TCR通过将隐性知识显性化,实现了从个人依赖到系统协同的转变。讨论部分阐述了该系统的创新性、推广路线图及潜在局限,强调需平衡效率与算法公平性。结论指出TCR为医疗信息学向持续学习系统转型提供了可行范式。
原创
博文更新于 2025.12.17 ·
645 阅读 ·
68 点赞 ·
55 评论 ·
64 收藏

面向临床的TCR闭环:在手术室/ICU协同场景与多中心科研中的实证研究(上)

摘要 本研究针对手术室/ICU协同场景中急救设备响应延迟问题,提出并验证了一种临床终点导向的TCR闭环管理框架(Technology–Clinical–Research loop)。通过2023-2025年的中断时间序列研究,在技术层实现设备99%互联与实时定位,临床层建立标准化流程与可审计终点(E1响应时间、S3延误事件),科研层将数据治理为多中心可用的研究资产。结果显示:急救设备响应时间均值从256.8秒降至89.4秒(P<0.001),延误事件发生率下降74.2%,科研队列构建效率提升6.6倍。
原创
博文更新于 2025.12.17 ·
1162 阅读 ·
53 点赞 ·
25 评论 ·
44 收藏

2025行业盘点追踪,迈向生产级医疗AI:三大核心实践趋势的落地路径分析

摘要 医疗AI落地面临的核心挑战是如何将大型语言模型(LLM)从基准高分转化为临床可用的系统。本文提出三大关键工程实践: 提示工程与微调的组合:通过轻量级提示优化(如指令设计、检索增强)快速验证价值,再针对性微调提升性能; 可编程安全约束(Guardrails):将风险控制代码化,实现幻觉拦截、证据追溯与合规检查; 人机混合闭环:将医生复核与反馈机制产品化,形成持续迭代的临床辅助系统。 文章系统拆解了从快速验证到生产部署的渐进路径,强调模型需具备可解释性、可审计性与可控风险,为医疗AI团队提供可落地的工程方
原创
博文更新于 2025.12.16 ·
1070 阅读 ·
57 点赞 ·
29 评论 ·
56 收藏

基于模型上下文协议(MCP)的可插拔式临床AI工具链Clinical DS研究(下)

本研究深入探讨了医疗AI在临床落地中的核心矛盾,即如何从“模型能答”迈向“系统可信、可用、可追溯”。为解决此矛盾,我们创新性地提出并详细设计实现了一套基于模型上下文协议(MCP)的**“可插拔式临床AI工具链”**架构。通过将复杂的医疗AI系统解构为Host、MCP Server和标准协议三层,并将各类能力(临床决策、影像分析、合规审计)封装为标准的、可独立演进的Server,我们成功地构建了一个模块化、高内聚、低耦合的系统。
原创
博文更新于 2025.12.16 ·
1000 阅读 ·
60 点赞 ·
35 评论 ·
54 收藏

总访问百万,粉丝破万纪念,欢迎点赞关注!

发布动态 2025.12.15

基于模型上下文协议(MCP)的可插拔式临床AI工具链Clinical DS研究(中)

本文介绍了Clinical Server、Imaging Server和Compliance & Audit Server三个关键医疗AI组件的实现细节。Clinical Server通过Pydantic模型实现强类型约束,提供原子工具与组合工具的分层设计,并内置审计追踪功能。Imaging Server明确区分影像"发现"与"诊断",为下游系统提供可靠事实基础。Compliance & Audit Server采用中心化日志存储,确保审计数据的不可篡
原创
博文更新于 2025.12.15 ·
890 阅读 ·
64 点赞 ·
33 评论 ·
52 收藏

基于模型上下文协议(MCP)的可插拔式临床AI工具链Clinical DS研究(上)

本研究旨在解决医疗人工智能(AI)在临床落地中面临的核心挑战:如何在严格合规与数据安全的前提下,构建可信赖、可审计、可灵活扩展的智能诊疗辅助系统。传统的单体式AI应用存在“黑盒”风险、难以审计、能力扩展与合规迭代耦合等问题。为此,本文提出并详细论述了一种基于新兴的。
原创
博文更新于 2025.12.15 ·
1206 阅读 ·
71 点赞 ·
34 评论 ·
46 收藏

【经验谈】医疗类模型论文速读判定是否引用和复现经验秘籍

摘要:医疗AI论文阅读与应用的“分诊式工作流” 医疗AI论文存在数据偏差、标签不确定性、临床价值与指标脱节、复现门槛高等独特挑战。本文提出一套“分诊式工作流”,帮助读者30分钟内完成可信度评估,重点关注:1)数据来源与标签质量;2)患者级/时间级拆分策略;3)外部验证与临床指标(如PPV/NPV);4)局限性分析。引用时应区分证据等级(单中心回顾性至前瞻性研究),避免错位引用。复现需明确目标(验证/迁移/改进),警惕患者级泄漏等常见陷阱。通过系统性评估,实现高效筛选、精准引用和稳健复现,最终提升临床落地可靠
原创
博文更新于 2025.12.13 ·
953 阅读 ·
36 点赞 ·
18 评论 ·
28 收藏

智慧守护:医疗AI算法重构居家养老新生态深度解析(五)

本文提出了一种基于CNN的舌诊体质分类技术架构,采用检测或分割两种方案进行舌体区域提取。系统包含标准化预处理流程(白平衡、亮度归一化、CLAHE增强)和EfficientNet-B0分类模型。工程实现方面给出了项目目录结构初始化脚本和PyTorch数据加载方案,特别集成了WeightedRandomSampler处理类别不平衡问题。检测路线采用Faster R-CNN模型,要求COCO格式标注数据。该架构支持从快速验证到精度优化的完整开发流程,为中医体质辨识提供了可行的技术实现方案。
原创
博文更新于 2025.12.13 ·
1159 阅读 ·
47 点赞 ·
22 评论 ·
50 收藏

智慧守护:医疗AI算法重构居家养老新生态深度解析(四)

人口结构老龄化使得慢性病管理、认知退化与心理健康问题叠加出现。抑郁倾向在老年群体中常与躯体化症状、睡眠障碍、社交退缩共现,且其表达方式更隐匿,导致漏检率高、干预滞后。传统精神卫生资源主要集中在城市与专科机构,客观上造成了“需求高—供给稀缺”的结构性矛盾。因此,探索一种低门槛、可长期、可动态追踪的抑郁风险筛查手段具有重要现实意义。
原创
博文更新于 2025.12.12 ·
803 阅读 ·
35 点赞 ·
11 评论 ·
29 收藏

多模态推理效率革命:GitCode+昇腾NPU部署llava-1.5-7b-hf的实践全维度性能测试

本文分享了在GitCode平台上使用昇腾NPU部署llava-1.5-7b-hf模型的全流程实践。作者基于前期CodeLlama-7B模型部署经验,详细介绍了环境搭建、模型适配和性能优化过程。文章重点展示了GitCode Notebook的NPU配置选择(昇腾910B)、模型下载、环境安装(使用阿里云镜像加速)以及测试代码实现。通过图文并茂的方式,为开发者提供了在国产算力平台上运行多模态大模型的实用指南,特别强调了国内开发环境的本土化优势和技术支持。
原创
博文更新于 2025.12.12 ·
775 阅读 ·
43 点赞 ·
15 评论 ·
40 收藏

智慧守护:医疗AI算法重构居家养老新生态深度解析(三)

随着慢性病尤其是2型糖尿病患病率的上升,如何通过智能算法对血糖波动进行预测并给出个性化饮食建议,成为慢性病管理的重要方向。本文基于梯度提升回归树(Gradient Boosting Decision Tree, GBDT)算法,构建了一个“慢性病管理助手”原型系统,以血糖记录、饮食结构(碳水/蛋白质)及运动时长为核心特征,预测餐后血糖水平,并在此基础上生成个性化饮食建议。采用 Python 与 Scikit-learn 实现模型训练与评估,使用模拟数据进行实验验证。
原创
博文更新于 2025.12.11 ·
1484 阅读 ·
62 点赞 ·
27 评论 ·
42 收藏

智慧守护:医疗AI算法重构居家养老新生态深度解析(二)

本文提出了一种基于深度学习的生命体征预测框架,用于提前1、6、12小时预警急性事件。该研究采用LSTM、注意力机制和Transformer模型对多维生命体征时序数据进行建模,通过多任务学习结构实现联合预测。实验结果表明,注意力增强模型和Transformer模型相比传统LSTM,AUC和F1指标提升4-12%,并显著改善了长期预测能力。该方案为可穿戴医疗设备提供了一套可工程化的智能预警解决方案,具有重要的临床应用价值。 关键词:深度学习、时序预测、生命体征、急性事件预警、多任务学习、注意力机制、Transf
原创
博文更新于 2025.12.11 ·
1011 阅读 ·
51 点赞 ·
37 评论 ·
46 收藏

开源协同∞智算赋能:GitCode+昇腾NPU部署CodeLlama全流程实践

昇腾NPU部署CodeLlama-7B,踩了不少坑,也总结了一些经验。CodeLlama在代码生成这块确实好用,昇腾NPU的算力也够用,就是部署过程需要折腾一下。整个流程从环境搭建到性能调优,中间遇到的问题不少,比如模型格式转换、内存优化、推理速度提升
原创
博文更新于 2025.12.11 ·
2676 阅读 ·
102 点赞 ·
42 评论 ·
55 收藏

智慧守护:医疗AI算法重构居家养老新生态深度解析(一)

摘要:医疗AI算法在应对老龄化挑战中展现出重要价值。文章探讨了居家养老面临的监护困境和医疗AI的核心优势,重点分析了其在健康监测、安全防护和生活质量提升三大场景的应用。通过生理指标实时追踪、慢性病管理智能助手、跌倒检测系统等技术,AI算法显著提升了养老监护的精准性和响应速度。典型案例显示,多模态数据融合和轻量化边缘计算等技术突破使异常事件识别准确率达95%,有效降低了居家安全风险。这些创新应用为构建智能化、个性化的居家养老体系提供了技术支撑。
原创
博文更新于 2025.12.10 ·
1667 阅读 ·
55 点赞 ·
28 评论 ·
36 收藏

面向下一代AI研究:CUDA Tile编程模型及其在多模态医疗大模型与可解释性方法(下)

摘要 CUDA Tile编程模型通过抽象化线程级控制,转向tile级数据并行,显著提升了GPU计算效率。其核心优势在于降低开发门槛、自动化性能优化、高效利用Tensor Core及算子融合能力,特别适用于AI/ML领域中的规则化、高算术密度任务,如深度学习算子、多模态融合及HPC计算。然而,Tile模型也存在局限性,如固定尺寸限制、不适用于复杂控制流、编译器黑盒化及对NVIDIA生态的强依赖。案例研究表明,Tile模型在多模态医疗大模型与可解释性AI中潜力巨大,可高效处理非标准化算子与跨模态交互,但其通用性
原创
博文更新于 2025.12.09 ·
1026 阅读 ·
65 点赞 ·
31 评论 ·
50 收藏

面向下一代AI研究:CUDA Tile编程模型及其在多模态医疗大模型与可解释性方法(上)

摘要 CUDA Tile编程模型是NVIDIA在CUDA 13.1中提出的新型GPU计算范式,通过将“Tile”作为核心抽象单元,实现了从线程级控制到块级张量操作的范式跃迁。该模型采用声明式编程方式,开发者仅需描述数据块的计算逻辑,而线程调度、内存对齐等底层细节由编译器自动优化,显著降低了深度学习算子开发和多模态任务实现的门槛。研究表明,Tile模型能有效提升Tensor Core利用率,增强跨硬件架构的性能可移植性,特别适用于医疗多模态大模型中的非标准算子(如跨模态注意力、区域加权等)高效实现。此外,基于
原创
博文更新于 2025.12.09 ·
1269 阅读 ·
67 点赞 ·
30 评论 ·
49 收藏

多模态知识图谱赋能大学医疗AI精准教学研究(下)

本文介绍了基于多模态知识图谱的医疗AI精准教学系统的开发与实验验证。系统采用Spring Boot、Neo4j、PyTorch等技术栈,实现知识图谱管理、个性化教学推送、VR技能训练等功能模块。通过16周的对照实验表明,该系统能显著提升医学生的知识掌握度(实验组85.67±6.32 vs 对照组76.43分)、临床技能水平和学习体验。研究验证了多模态知识图谱在医疗教育中的赋能作用,为AI辅助精准教学提供了实证支持。
原创
博文更新于 2025.12.08 ·
1166 阅读 ·
61 点赞 ·
31 评论 ·
48 收藏

多模态知识图谱赋能大学医疗AI精准教学研究(中)

摘要 本研究提出多模态医学知识图谱构建方法及医疗AI精准教学模型。知识图谱构建涵盖语音-文本对齐、行为轨迹融合等技术,通过实体消歧、关系冲突消解等规则实现知识融合,并采用TransE、GNN等算法优化图谱质量。系统架构分为数据层(多模态存储)、知识智能层(图谱推理)和教学应用层(个性化服务)。基于此构建的精准教学模型整合学习者画像、知识图谱与AI技术,形成“知识-学习-教学-评估”闭环,支持个性化病例推送、技能评分等应用,实现医学教育的智能化与精准化。
原创
博文更新于 2025.12.08 ·
1258 阅读 ·
42 点赞 ·
21 评论 ·
46 收藏

多模态知识图谱赋能大学医疗AI精准教学研究(上)

摘要 本研究探讨大数据、多模态技术与人工智能在医学教育中的融合应用,提出"大数据为基础—多模态知识图谱为核心—医疗AI为工具—精准教学为目标"的框架。通过构建整合文本、影像、语音等数据的医学知识图谱,结合AI技术实现个性化教学与智能反馈,形成覆盖教学全流程的精准教学体系。研究为医学教育智能化提供了可落地的技术路径,丰富了跨学科教育理论。 关键词:大数据;多模态知识图谱;医疗AI;精准教学;医学教育
原创
博文更新于 2025.12.07 ·
1885 阅读 ·
55 点赞 ·
19 评论 ·
50 收藏
加载更多