技术路上的苦行僧
码龄8年
求更新 关注
提问 私信
  • 博客:465,132
    社区:212
    动态:46
    465,390
    总访问量
  • 291
    原创
  • 1,541
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2017-11-04

个人简介:不怕别人天赋比你高,就怕别人比你更努力

博客简介:

jokeMqc的博客

查看详细资料
个人成就
  • 获得1,663次点赞
  • 内容获得50次评论
  • 获得2,074次收藏
  • 代码片获得636次分享
  • 博客总排名723,094名
  • 原力等级
    原力等级
    5
    原力分
    1,988
    本月获得
    0
创作历程
  • 4篇
    2025年
  • 75篇
    2024年
  • 5篇
    2023年
  • 24篇
    2022年
  • 66篇
    2021年
  • 15篇
    2020年
  • 47篇
    2019年
  • 47篇
    2018年
  • 27篇
    2017年
成就勋章
TA的专栏
  • 性能调优专题
    付费
    15篇
  • SpringCloud
    22篇
  • 云原生应用与架构设计
    8篇
  • 互联网全景消息实战
    12篇
  • Mybatis源码解析
    13篇
  • Spring源码分析系列
    35篇
  • JAVA并发专题
    26篇
  • 设计模式
    35篇
  • SpringBoot源码分析
    13篇
  • 分布式技术专题
    7篇
  • JVM
    10篇
  • Java面试
    3篇
  • 代码技巧
    3篇
  • 分布式事务专题
    9篇
  • Mycat学习总结
    1篇
  • 框架整合
    5篇
  • 其他文档-genymotion-arm兼容包
    3篇
  • spring
    12篇
  • 其他
    15篇
  • 数据库
    3篇
  • 缓存技术
    3篇
  • shiro
    3篇
  • maven
    2篇
  • json解析
    1篇
  • lombok
    1篇
  • 文件服务
    3篇
  • spring mvc
    2篇
  • ActiveMQ
    2篇
  • java
    8篇
  • master-worker
    1篇
  • 阿里
    1篇
  • netty
    1篇
  • 网络编程
    2篇
  • nginx
    7篇
  • Redis学习总结
    10篇
  • 工作总结
    4篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 1

兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

互联网全景消息(11)之Kafka深度剖析(下)

在前面讲过kafka每个主题可以有多个分区,每个分区在它所在的broker上创建一个文件夹每个分区又分为多个段,每个段两个文件,log文件存储顺序消息,index文件里存消息的索引,然后每一个段的命名直接以当前段的第一条消息的offset为名。需要注意的是偏移量,不是序号,然后偏移量是从下标0开始,第几条消息 = 偏移量 +1,类似于数组长度和下标。例如:0.log -> 该文件存储8条数据,offset为0-7;8.log -> 有两条,offset为 8-9;
原创
博文更新于 2025.01.14 ·
1002 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

互联网全景消息(10)之Kafka深度剖析(中)

kafka高级应用
原创
博文更新于 2025.01.10 ·
1137 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

互联网全景消息(9)之Kafka深度剖析(上)

Kafka最初是LinkedIn公司采用Scala 语言开发,现在已经捐赠给了Apache基金会。目前Kafka已经定位为一个分布式流式处理平台,它以高吞吐、可持久化、可水平扩展、支持流处理等多种特性而被广泛应用。Apache Kafka能够支撑海量数据的数据传递,在离线和实时的消息处理业务系统中,Kafka都有广泛的应用。
原创
博文更新于 2025.01.08 ·
1269 阅读 ·
28 点赞 ·
0 评论 ·
29 收藏

分布式专题(11)之Zookeeper特性与节点数据类型详解

Zookeeper数据模型与结构与Unix文件系统很类似,整体上可以看做是一棵树,每个节点称做一个ZNode。Zookeeper的数据模型是层次模型,层次模型常见于文件系统。Zookeeper的层次模型称做Data Tree,Data Tree的每个节点叫做ZNode。不同于文件系统,每个节点都可以保存数据,每个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径的唯一标记,每个节点都有一个版本(Version),版本从0开始计数;
原创
博文更新于 2025.01.03 ·
1405 阅读 ·
7 点赞 ·
0 评论 ·
30 收藏

互联网全景消息(8)之RabbitMQ进阶介绍

基于死信队列在队列消息已满的情况下,消息也不会丢失;实现延迟消费的效果。比如:下订单时,有15分钟的付款时间。
原创
博文更新于 2024.12.30 ·
1195 阅读 ·
14 点赞 ·
0 评论 ·
17 收藏

互联网全景消息(7)之RabbitMq高阶使用

生产者以及Broker要保障消息传递的可靠性如果结合失败通知以及发送方确认和持久化消息来实现。1.发送方确认:保障消息能够到达broker;2.失败通知:保障的是消息能够成功路由到队列;3.持久化队列:保障消息的持久化;
原创
博文更新于 2024.12.30 ·
1408 阅读 ·
9 点赞 ·
0 评论 ·
27 收藏

分布式专题(10)之ShardingSphere分库分表实战指南

在之前的示例中就介绍了ShardingSphere提供的MOD、HASH-MOD这样的简单内置分片策略,standard、complex、hint三种典型的分片策略以及CLASS_BASED这种扩展分片策略的方法。为什么要有这么多的分片策略,其实就是以为分库分表面临的业务场景其实是很复杂的。即便是ShardingSphere,也无法真的像MySQL、Oracle这样的数据库产品一样,完美的兼容所有的SQL语句。
原创
博文更新于 2024.12.24 ·
1758 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

分布式专题(9)之Mysql高可用方案

数据库,应该是一个应用当中最为核心的价值所在,也是开发过程中必须熟练掌握的工具。之前我们就学习过很多对MySQL的调优。但是随着现在互联网应用越来越大,数据库会频繁的成为整个应用的性能瓶颈。我们经常使用的MySQL数据库,也就不断面临数据量太大、数据访问太频繁、数据读写速度太快等一系列的问题。而传统的这些调优方式,在真正面对海量数据冲击时,往往就会显得很无力。因此,现在互联网对于数据库的使用也越来越小心谨慎。例如添加Redis缓存、增加MQ进行流量削峰等。
原创
博文更新于 2024.12.23 ·
2075 阅读 ·
24 点赞 ·
0 评论 ·
26 收藏

分布式专题(8)之MongoDB存储原理&多文档事务详解

MongoDB从3.0开始引入可插拔存储引擎的概念,主要有MMAPV1、WiredTiger存储引擎可供选择。从MongoDB 3.2开始,WiredTiger存储引擎是默认的存储引擎。从4.2版开始,MongoDB删除了废弃的MMAPv1存储引擎。事务(transaction)是传统数据库所具备的一项基本能力,其根本目的是为数据的可靠性与一致性提供保障。而在通常的实现中,事务包含了一个系列的数据库读写操作,这些操作要么全部完成,要么全部撤销。
原创
博文更新于 2024.12.19 ·
1791 阅读 ·
8 点赞 ·
0 评论 ·
30 收藏

分布式专题(7)之MongoDB分片集群&高级集群架构详解

chunk的意思是数据块,一个chunk代表了集合中的“一段数据”,例如,用户集合(db.users)在切分成多个chunk之后如图所示:chunk所描述的是范围区间,例如,db.users使用了userId作为分片键,那么chunk就是userId的各个值(或哈希值)的连续区间。chunk的切分方式,决定如何找到数据所在的chunkchunk的分布状态,决定如何找到chunk所在的分片。
原创
博文更新于 2024.12.17 ·
1594 阅读 ·
29 点赞 ·
0 评论 ·
25 收藏

分布式专题(6)之MongoDB复制(副本)集实战及其原理分析

Mongodb复制集(Replication Set)由一组Mongod实例(进程)组成,包含一个Primary节点和多个Secondary节点,Mongodb Driver(客户端)的所有数据都写入Primary,Secondary从Primary同步写入的数据,以保持复制集内所有成员存储相同的数据集,提供数据的高可用。复制集提供冗余和高可用性,是所有生产部署的基础。数据写入时将数据迅速复制到另一个独立节点上在接受写入的节点发生故障时自动选举出一个新的替代节点。
原创
博文更新于 2024.12.17 ·
1549 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

分布式专题(5)之MongoDB聚合操作与索引使用详解

聚合操作允许用户处理多个文档并返回计算结果。聚合操作组值来自多个文档,可以对分组数据执行各种操作以返回单个结果。聚合操作包含三类:单一作用聚合、聚合管道、MapReduce。聚合管道是一个数据聚合的框架,模型基于数据处理流水线的概念。从MongoDB 5.0开始,map-reduce操作已被弃用。
原创
博文更新于 2024.12.16 ·
896 阅读 ·
29 点赞 ·
0 评论 ·
24 收藏

分布式专题(4)之MongoDB快速实战与基本原理

MongoDB是一个文档数据库(以JSON为数据模型),由C++语言编写,旨在为WEB应用提供可扩展的高性能存储解决方案。MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的,它支持的数据结构非常松散,数据格式是BSON,一种类似JSON的二进制形式的存储格式,简称Binary JSON,和JSON一样支持内嵌的文档对象和数组对象,因此可以存储比较复杂的数据类型。
原创
博文更新于 2024.12.12 ·
1331 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

分布式专题(3)之Redis缓存设计与性能优化

缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去了缓存保护后端存储的意义。造成缓存穿透的基本原因有两个:第一, 自身业务代码或者数据出现问题。第二, 一些恶意攻击、 爬虫等造成大量空命中。
原创
博文更新于 2024.12.11 ·
800 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

分布式专题(2)之Redis缓存高可用集群

在redis3.0之前的版本有实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,哨兵的配置略微复杂,并且性能和高可用各方面表现一般,特别是在主从切换的瞬间访问中断的情况,而且哨兵模式只有一个主节点对外提供服务,没发支持很高的并发,且单个节点内存也不宜设置过大,否则会导致持久化文件过大,影响数据恢复或主从同步频率。
原创
博文更新于 2024.12.10 ·
1097 阅读 ·
18 点赞 ·
0 评论 ·
9 收藏

分布式专题(1)之Redis持久化、主从与哨兵架构详解

在默认的情况下,Redis将内存数据快照保存名字为:dump.rdb的二进制文件中,当然你在配置文件redis.conf中修改对应的二进制文件名。redis开启RDB快照,可以在redis中设置,如:让它在N秒内至少有多少个改动这一条件满足时,就自动保存一次快照数据。例如:比如说, 以下设置会让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”这一条件时, 自动保存一次数据集:save 60 1000 //关闭RDB只需要将所有的save保存策略注释掉即可。
原创
博文更新于 2024.12.09 ·
1332 阅读 ·
14 点赞 ·
0 评论 ·
17 收藏

JAVA源码分析之HashMap 1.7

一、简介类定义:public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable二、数据结构2.1具体描述HashMap采用的数据结构为:数组+链表,该数据结构方式也称为:...
原创
博文更新于 2024.12.07 ·
437 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

并发专题(10)之FutureTask源码剖析

Java创建线程的方式,一般常用的是Thread,Runnable,如果需要处理当前的任务有返回结果的话,需要使用Callable。Callable运行需要配合Future来使用。Future是一个接口,一般会使用FutureTask实现类去接收Callable任务的返回结果。FutureTask存在的问题就是同步非阻塞执行的任务,他不会主动通知你返回结果是什么。
原创
博文更新于 2024.12.07 ·
422 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

并发专题(9)之JUC阻塞队列源码分析

DelayQueue是无界队列,延迟的操作,可以向延迟队列追加任务,这个任务需要指定延迟时间,只有延迟时间到了,才可以将任务从队列中获取出来。任务可以指定延迟时间,所以需要任务满足一定的需求,DelayQueue的任务需要实现Delayed接口,重写getDelay方法和compare方法。getDelay:任务什么时候可以出队列。。compareTo:存放任务到队列时,放在二叉堆的哪个位置。
原创
博文更新于 2024.12.05 ·
849 阅读 ·
15 点赞 ·
0 评论 ·
10 收藏

并发专题(8)之JUC阻塞容器源码剖析

ArrayBlockingQueue底层是采用数组实现的一个队列。因为底层是数据,一般被成为有界队列、其阻塞模式是基于ReentrantLock来实现的。// 存数据操作 add(E),offer(E),put(E),offer(E,time,unit) // add(E):添加数据到队列,如果满了,扔异常。
原创
博文更新于 2024.12.03 ·
1056 阅读 ·
20 点赞 ·
0 评论 ·
27 收藏
加载更多