jike007gt
码龄1年
求更新 关注
提问 私信
  • 博客:991,615
    991,615
    总访问量
  • 1,271
    原创
  • 1,529
    排名
  • 2,856
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2025-05-20
博客简介:

jike007gt的博客

查看详细资料
个人成就
  • 获得19,727次点赞
  • 内容获得11次评论
  • 获得18,463次收藏
  • 代码片获得919次分享
  • 原力等级
    原力等级
    5
    原力分
    1,761
    本月获得
    190
创作历程
  • 1273篇
    2025年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

TA的推广
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

跟着Nature Ecology&Evolution学作图:R语言ggmsa包展示多序列比对结果

这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。上面的代码是写了一个简单的循环,做了四个数据的图,我试着做其中一个图,但是遇到了报错。论文中的图做的都非常好看,而且提供数据和代码,我们可以找来学习。
原创
博文更新于 21 小时前 ·
315 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

数据仓库(13)大数据数仓经典最值得阅读书籍推荐

从事数仓工作,在工作学习过程也看了很多数据仓库方面的数据,此处整理了数仓中经典的,或者值得阅读的书籍,推荐给大家一下,希望能帮助到大家。
原创
博文更新于 21 小时前 ·
617 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

跟着Nature学作图:R语言ggplot2堆积柱形图完整示例

这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。今天的推文学习一下推文中的Figure 1a的堆积柱形图,没有找到论文中的作图代码,但是找到了原始数据集,有了原始数据集就可以自己写代码来做这个图。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
原创
博文更新于 21 小时前 ·
329 阅读 ·
20 点赞 ·
0 评论 ·
7 收藏

浅谈Flink批模式Adaptive Hash Join

随着Flink流批一体能力的迅速发展以及Flink SQL易用性的提升,越来越多的厂商开始将Flink作为离线批处理引擎使用。在我们使用Flink进行大规模join操作时,也许会发生如下的异常,导致任务失败:字面意思即为Hash Join的递归次数超出限制。Flink批模式下的join算法有两种,即Hybrid Hash Join和Sort-Merge Join。顾名思义,Hybrid Hash Join就是Simple Hash Join和Grace Hash Join两种算法的结合(关于它们,看官
原创
博文更新于 21 小时前 ·
716 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

按照员工部门进行分级1

/ 获取公共类的测试数据// 获取集合流对象// 分组规则方法,按照员工部门进行分级// 按照部门分成若干List集合,集合中保存员工对象,返回成Map// 获取Map的中的所有部门名称for (String deptName : keySet) { // 遍历部门名称集合// 输出部门名称System.out.println("【" + deptName + "】 部门的员工列表如下:");// 获取部门名称对应的员工集合。
原创
博文更新于 21 小时前 ·
564 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

java的故事

Java 的故事可以追溯到上世纪90年代初,当时 Sun Microsystems 公司的一支团队开始设计一种新的计算机编程语言。这个团队的领导者是詹姆斯·高斯林(James Gosling),他的团队在1991年开始着手研发这种新语言,最初称之为 Oak(橡树)。Oak 最初的设计目标是用于嵌入式系统的开发,但随着互联网的迅猛发展,Oak 的使用场景逐渐扩展到了 Web 应用开发领域。为了更好地适应这个新的应用场景,Oak 的设计团队对其进行了大幅度的修改和完善,最终于1995年发布了 Java 语言。
原创
博文更新于 21 小时前 ·
102 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

SpringBoot集成onlyoffice实现word文档编辑保存

onlyoffice为一款开源的office在线编辑组件,提供word/excel/ppt编辑保存操作。
原创
博文更新于 21 小时前 ·
577 阅读 ·
14 点赞 ·
0 评论 ·
21 收藏

DDD碎片记录 01.落地到数据库设计

这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。分析系统的业务实体,在领域模型分析中采用类图的形式,每个类可以通过其属性来表述数据结构,又可以通过添加方法来描述对数据结构的处理。因此在领域模型的设计过程中,即完成了对数据结构的梳理,也确定了系统对这些数据结构的处理。多对多关系典型案例:用户角色权限。
原创
博文更新于 前天 16:17 ·
236 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

hdWGCNA:单细胞WGCNA分析方法

该表由三列组成:gene_name: 存储基因的符号或 ID,module: 存储基因的模块分配,color: 存储每个模块的颜色映射,用于许多下游绘图步骤。简而言之,模块特征基因是通过对包含每个模块的基因表达矩阵的子集执行主成分分析 (PCA) 来计算的。WGCNA 和 hdWGCNA 的一般要求是选择无标度拓扑模型拟合大于或等于 0.8 的最低软阈值,因此在这种情况下,我们选择9为软阈值。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
原创
博文更新于 前天 16:09 ·
907 阅读 ·
11 点赞 ·
0 评论 ·
18 收藏

ChatGPT 背后的数学

ChatGPT是由OpenAI开发的语言模型,它使用深度学习在自然语言中生成类似人类的响应。它基于转换器架构,并在大量文本数据语料库上进行训练,以生成连贯且有意义的答案。ChatGPT 背后的数学很复杂,涉及几种深度学习技术。image.png。
原创
博文更新于 前天 16:03 ·
610 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

Docker(单机Kafka安装)

我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。停止kafka容器和重启。
原创
博文更新于 前天 16:01 ·
527 阅读 ·
9 点赞 ·
0 评论 ·
17 收藏

复现《nature communications》散点小提琴图+蜜蜂图

今天我们学做一下NC文章的小提琴图,有小提琴图,也有散点,其实看过之前系列文章的人如果能够联想,可以想到这个的结合。只不过这篇文章的图有个特点是散点分布和小提琴图形状一致,在画散点的时候利用geom_quasirandom 代替geom_jitter即可。image.pngimage.png原文提供了原始作图数据,可去官网下载。作图:读入数据image.png结果基本是一致的,不同之处在于误差线,我是按照mean±sd,和原文有出入。
原创
博文更新于 2025.12.17 ·
268 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

机器学习遇到单细胞组学:Perturbation Modeling

从上述任务来看,预测扰动模型的建立就是为了捕获生物相关性,让模型去预测一些未知事件,从而减少药物开发时的费用,如果模型捕获基因干扰因素影响的特征,那么这些模型就能对病人对药物的敏感性做出解释和预测,目前通过单细胞转录组、基因组测序的方法就提供了重要的数据来源,为不同的扰动建模提供了数据支持。随着数据的大量积累,
原创
博文更新于 2025.12.17 ·
847 阅读 ·
28 点赞 ·
0 评论 ·
26 收藏

【5分钟背八股】2PC和3PC的区别是什么?

3pc比2pc多了一个can commit阶段,减少了不必要的资源浪费。因为2pc在第一阶段会占用资源,而3pc在这个阶段不占用资源,只是校验一下sql,如果不能执行,就直接返回,减少了资源占用。协调者超时: can commit,pre commit中,如果收不到参与者的反馈,则协调者向参与者发送中断指令。参与者超时: pre commit阶段,参与者进行中断;同时在协调者和参与者中都引入超时机制。2pc:只有协调者有超时机制,超时后,发送回滚指令。3pc:协调者和参与者都有超时机制。
原创
博文更新于 2025.12.17 ·
278 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

3. SpringCloud之Ribbon使用

image.pngRibbon 是一个独立的组件,是用来进行远程接口调用的,代码如下通过 getForObject 方法可以掉到用 micro-order 服务的,order/list 接口。然后在调用期间会存在负载均衡,micro-order 服务对应有几个服务实例就会根据负载均衡算法选择某一个去调用。
原创
博文更新于 2025.12.17 ·
825 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

直接调用接口方法获取结果

我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。static int add(int x, int y) { // 静态方法,返回两个参数相加的结果。
原创
博文更新于 2025.12.17 ·
284 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

200行代码实现CNN卷积结果的可视化

tiger1.png。
原创
博文更新于 2025.12.12 ·
286 阅读 ·
10 点赞 ·
0 评论 ·
4 收藏

架构师自诉:如何做到百万数据半小时跑批结束

今天针对于大数据量的跑批,在项目中实践思考就到此结束了。文章介绍了我们常见跑批任务中可能出现的风险和比较常用通用的一些优化思路进行了分享关于线程池和缓存的运用我未在文章中提及,这两点也对我们的高效跑批具有极大的帮助,小伙伴们可以加以利用当然文章只是引起大家针对于跑批任务的思考,更多的优化还需结合任务具体情况和项目本身环境进行处理。
原创
博文更新于 2025.12.12 ·
813 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

常见文本分类模型

这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。在每一个时间步长上的隐藏状态,对每一个时间步长上的两个隐藏状态进行。中,文本嵌入矩阵的每一行是当前词的词向量以及上下文嵌入表示的拼接。
原创
博文更新于 2025.12.12 ·
541 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

NLP之从句子中提取单词步骤

浅层自然语言处理技术可以用来从句子中提取单词,其步骤为:1、将句子转换为小写2、删除停顿词(这些是在一种语言中常见的词。诸如 for、 very、 and、 of、 are 等词是常见的停止词)3、从给定的文本序列中提取 n-gram,即 n 个项目的连续序列(简单地增加 n,模型可以用来存储更多的上下文)4、分配一个句法标签(名词,动词等)5、通过语义/语法分析器方法从文本中提取知识,例如,尽量保留在名词/动词这样的句子中重量较高的词。
原创
博文更新于 2025.12.12 ·
331 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏
加载更多