jameswangdonghao
码龄3年
求更新 关注
提问 私信
  • 博客:3,115
    3,115
    总访问量
  • 7
    原创
  • 0
    粉丝
  • 60
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2023-05-22
博客简介:

jameswangdonghao的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得3次评论
  • 获得5次收藏
  • 博客总排名1,724,258名
创作历程
  • 7篇
    2023年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 9

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

生成式和判别式模型的区别

不同点:生成式模型会依据联合概率P(x,y),由贝叶斯公式P(A|B)=P(A)P(B|A)/P(B)计算得到条件概率。判别式模型无法辨别数据本身的特性,需要数据较少;生成式模型需要大量数据,学习成本较高。生成式模型:对数据进行建模后分数据类别建立不同的模型,学习联合概率后得到条件概率。判别式模型:生成分类函数和分类hyperplane,学习条件概率。生成式模型可转判别式,判别式不可转生成式。共通点:依赖条件概率。
原创
博文更新于 2023.07.05 ·
255 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Yolov1到v7的各种算法改进及背后思想

SIoU Loss通过引入了所需回归之间的向量角度,重新定义了距离损失,有效降低了回归的自由度,加快网络收敛,进一步提升了回归精度。是将原输入分成两个分支,分别进行卷积操作使得通道数减半,然后一个分支进行Bottleneck * N操作,然后concat两个分支,使得BottlenneckCSP的输入与输出是一样的大小,这样是为了让模型学习到更多的特征。通过卷积层和BN的合并以及卷积层之间的合并(3*3和1*1的合并)提高运行速度。这样做的好处是保留了尽可能多的不同层上的特征,提高了预测的准确性。
原创
博文更新于 2023.07.05 ·
752 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

视觉检测难点

解决方案:硬采样:规定正负比例样本 ,软采样:规定权重,无采样:根据前面的样本估计后面的权重,生成式解决方法:GAN。解决方案:多尺度训练,Scale Normalization for Image Pyramids。解决方案:SSD网络,anchor 理念,在损失函数中加入调制因子,FPN特征金字塔。解决方案:切片、对小对象进行过采样,augumentation。解决方案:差值图像+开闭操作。
原创
博文更新于 2023.06.19 ·
284 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

AI视觉检测目前的一些难点

但经常遇到的情况是,许多明显的缺陷,因为之前没有发生过,或者发生的模式过分多样,而被漏检。1、光源与成像:机器视觉中优质的成像是第一步,由于不同材料物体表面反光、折射等问题都会影响被测物体特征的提取,因此光源与成像可以说是机器视觉检测要攻克的第一个难关。2、重噪音中低对比度图像中的特征提取:在重噪音环境下,真假瑕疵的鉴别很多时候较难,这也是很多场景始终存在一定误检率的原因,但这块通过成像和边缘特征提取的快速发展,已经在不断取得各种突破。来自知乎:施努卡视觉在问题:机器视觉工业检测技术的发展面临哪些难题?
原创
博文更新于 2023.06.15 ·
1061 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

3D点云输入——PointNet和Pointnet++简述

3.4D->3D batch_size*n_points*features 每个sample对应16个点,1个特征。改进方法:MSG(multi-scale grouping) MRG(multi-res grouping)1.维度变换:batch_size*n_points*n_sample*n_features。总体结构:分别对单个点进行特征提取——>再在hiddenlayer做max操作。点云的backbone:Pointnet 处理点云数据。-每次采样分组卷积得到-》batch*中心点*特征。
原创
博文更新于 2023.06.12 ·
401 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

6.9- C++学习笔记 (ELF文件&内存)

它是自动对象(auto),在程序运行期间不是一直存在,而是只在函数执行期间存在,函数的一次调用执行结束后,变量被撤销,其所占用的内存也被收回,局部变量对于函数外部的程序来说是不可见的。静态全局变量:具有文件作用域。全局区/静态存储区:主要为 .bss 段和 .data 段,存放全局变量和静态变量,程序运行结束操作系统自动释放,在 C 中,未初始化的放在 .bss 段中,初始化的放在 .data 段中,C++ 中不再区分了。常量存储区:.rodata 段,存放的是常量,不允许修改,程序运行结束自动释放。
原创
博文更新于 2023.06.11 ·
275 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6.2算法调研笔记

2. Tiling,图片分patch。Retina Face结构。Laplacian 算子。3.1 多分类任务损失。1.加入时许上下文结构。
原创
博文更新于 2023.06.09 ·
88 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏