itwangyang520
码龄10年
求更新 关注
提问 私信
  • 博客:757,671
    社区:3
    视频:30
    757,704
    总访问量
  • 428
    原创
  • 3,619
    排名
  • 7,842
    粉丝
  • 84
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:马来西亚
加入CSDN时间: 2015-12-24

个人简介:AIDD - 人工智能药物设计 - QQ群: 928809512

博客简介:

itwangyang520的博客

查看详细资料
个人成就
  • 获得3,765次点赞
  • 内容获得179次评论
  • 获得4,189次收藏
  • 代码片获得5,623次分享
  • 原力等级
    原力等级
    6
    原力分
    2,850
    本月获得
    97
创作历程
  • 102篇
    2025年
  • 127篇
    2024年
  • 14篇
    2023年
  • 46篇
    2022年
  • 11篇
    2021年
  • 56篇
    2020年
  • 59篇
    2019年
  • 13篇
    2018年
  • 3篇
    2017年
成就勋章
TA的专栏
  • mac
    12篇
  • Python3
    22篇
  • web前端面试
  • mac系统了命令
    3篇
  • mac系统
    3篇
  • web前端
    53篇
  • python
    6篇
  • 终端
    5篇
  • uni-app
    10篇
  • JavaScript高级
    8篇
  • css
    4篇
  • vim
    2篇
  • vuejs
    11篇
  • JavaScript 
    5篇
  • vue.js
    3篇
  • vue开发工具
    3篇
  • 慕课网
    1篇
  • node.js
    1篇
  • 小程序
    1篇
  • vue进阶
  • 前端
    11篇
  • http&ajax
    2篇
  • 散文
    2篇
  • 标签
    1篇
  • bash
    1篇
  • 向日葵
    1篇
  • gulp打包工具
    1篇
  • oauth2.0
    1篇
  • 权限限制
    1篇
  • vue-token
    1篇
  • mac教程
    1篇
  • 代码片段
    1篇
  • 数组
  • toString()
    1篇
  • 笔记
    1篇
  • yarn 
    1篇
  • node-sass
    1篇
  • sql
    1篇
  • vue-cli4
    2篇
  • 路径别名配置
    1篇
  • 重定向
    1篇
  • cookie与session
    1篇
  • git
    1篇
  • vscode
    1篇
  • key:value
    1篇
  • node
    2篇
  • 数据集
    1篇
  • express
    1篇
  • docker
    1篇
  • vye.js
  • 2020年
  • 2020
  • vue-cli4.2.2
    1篇
  • yarn
    1篇
  • vue-router
    1篇
  • vue-cli4.x
    1篇
  • 性能优化
    1篇
  • 爬虫
    1篇
  • nodemon
    1篇
  • IE兼容性
    1篇
  • 脚手架
    1篇
  • 包管理器
  • echarts
    1篇
  • 设计模式
    2篇
  • 解压
    1篇
  • unzip
    1篇
  • axios
    1篇
  • vue-cli3
    2篇
  • eslint
    1篇
  • js
    1篇
  • WEB前端知识
    47篇
  • SSM
    1篇
  • canvas
    2篇
  • html
    6篇
  • web
    20篇
  • javascript
    26篇
  • 安全
    1篇
  • w ^微信小程序
    1篇
  • 研发管理
    1篇
  • 代码管理
    1篇
  • 数据库
    2篇
  • mysql
    3篇
  • JavaScript的
    17篇
  • Ës6
    15篇
  • web前短学习路线
    12篇
  • Vue
    3篇
  • mac os
    2篇
  • http协议
    1篇
  • css3
    1篇
  • react
    8篇
  • Charles
    1篇
  • ajax
    2篇
  • jsonp
    1篇
  • promise
    3篇
  • 继承
    2篇
  • 原型继承
    2篇
  • 拷贝继承
    2篇
  • 作用域
    2篇
  • async
    2篇
  • js封装
    1篇
  • 微信小程序
    2篇
  • 云开发
    1篇
  • 封装
    1篇
  • 正则表达式
    1篇
  • java
    1篇
  • idea
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 2

兴趣领域 设置
  • 前端
    javascriptcssvue.jsreact.jses6webpackxhtml前端框架
  • 后端
    node.js
  • 移动开发
    flutter
  • 网络与通信
    https
  • 微软技术
    typescript
  • 学习和成长
    面试
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AIDD-人工智能药物设计-AI 药物重定位:GraphRAG 让黑箱模型说人话

在药物研发领域,我们总是在信息的海洋里捞针。数据很多,从基因到疾病再到化合物,关系错综复杂。药物重定位(Drug Repurposing),也就是老药新用,是条捷径,但挑战在于如何高效地发现药物和新适应症之间的潜在联系。传统的计算方法常常像个黑箱,给你一个「可能有效」的答案,但你问它为什么,它就沉默了。这对于需要严谨验证的科学家来说,是完全不够的。这项研究拿出的方案,就像是给这个黑箱装上了一个透明的观察窗。它的工作原理是这样的:第一步,打好地基。研究者使用了药物重定位知识图谱(DRKG),这个图谱就像一张巨
原创
博文更新于 22 小时前 ·
478 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

AIDD-人工智能药物设计- AI 预测分子毒性:不仅更准,还能看懂

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=data%3Aimage%2Fsvg%2Bxml%2C%253C%253Fxml%20version%3D’1.0’%20encoding%3D’UTF-8’%253F%253E%253Csvg%20width%3D’1px’%20height%3D’1px’%20viewBox%3D’0%200%201%
原创
博文更新于 22 小时前 ·
483 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

AIDD-人工智能药物设计-AI 选对接算法,准确率提升 15%,但有个前提

MIT 的一项新研究提供了一个新视角,直接探究这些模型的内部运作,好比掀开它们的「头盖骨」一探究竟。更重要的是,它提供了一种诊断思路:它用数据证明,计算辅助药物发现的瓶颈,或许在于底层模拟方法的稳健性和可重复性,而非 AI 模型本身。MolAS 如同一个项目主管,它不直接执行对接,而是先分析蛋白质和配体的分子特征,然后为其匹配最合适的对接算法,例如为某个任务选择 Vina,为另一个选择 Glide。这些模型的输入五花八门:有的读取 SMILES 字符串,有的将分子看作图,还有的直接处理分子的三维结构。
原创
博文更新于 2025.12.15 ·
1237 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

AIDD-人工智能药物设计-StructGuy:破解蛋白变异预测的数据泄漏难题

基于 AI 的蛋白质变异效应预测存在一个普遍问题:数据泄漏。许多模型在测试集上表现优异,是因为训练时接触过相似的序列或同源蛋白。一旦面对训练集中未出现过的全新蛋白质,这些模型的表现就会急剧下降,这在创新靶点药物研发中难以接受。。研究者将重点放在了数据的「纯净度」上。他们构建了一个基于 MAVE (多重变异效应分析) 实验的专用数据集,并对其进行严格清洗和分割,确保训练集和测试集之间没有重叠。这样训练出的模型,才真正具备对未知蛋白质的泛化能力。
原创
博文更新于 2025.12.14 ·
239 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

AIDD-人工智能药物设计-扩散模型热力学:从 AI 提取物理能量

扩散模型的核心是加噪与去噪。这对业界的启示是,要实现精准医疗,特别是针对耐药突变的药物设计,不能仅依赖大语言模型(Large Language Model, LLM)处理序列。他们从文献和数据库中挖掘了过去被忽略的细节:氨基酸的替换、插入、缺失,以及关键的磷酸化修饰,最终整理出 4032 对新的激酶 - 配体数据。GeneGPT 曾展示了大语言模型(LLM)在生物医药领域的潜力,而 OpenBioLLM 提出了不同于 GeneGPT 单体(Monolithic)架构的方案:组建由「专家」构成的团队。
原创
博文更新于 2025.12.14 ·
1187 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

AIDD-人工智能药物设计-StoL:像搭乐高一样用扩散模型构建大分子 3D 构象

主流的 k-mer 或字节对编码(BPE)难以应对基因组极不均匀的信息密度:高密度编码区哪怕一个碱基的变动都至关重要,而大段重复序列则包含极低信息量。但在药物化学家眼中,苯环上的碳(sp2 杂化)与连着四个单键的碳(sp3 杂化)天壤之别:它们的空间占据、电子云分布及反应活性截然不同。在数据丰富靶点上学到的规律,可辅助预测数据稀缺靶点,这对仅有少量活性数据的孤儿受体极具实用价值。但这依然是计算化学领域的一次巧妙尝试,它展示了解决复杂问题的有效路径:将其拆解为我们已经能解决的简单问题。
原创
博文更新于 2025.12.03 ·
444 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

AIDD-人工智能药物设计-QSAR 数据清洗利器:MEHC-Curation 开源框架

SHAP 分析表明,模型捕捉到了强碱性残基隔离(sequestering)质子的现象,预测碎片强度分布随之偏移,并区分了电荷导向(charge-directed)和电荷远程(charge-remote)碎裂途径的细微差别。GRASP 的做法是,在提问时,给这个专家递上一张高度定制化的「小抄」,也就是「适应性软提示 (adaptive soft prompt)」。因此,GRASP 不仅能预测未知关系,还能审视和修正现有知识库,成为一个科学发现的引擎,帮助我们从海量数据中找到新的生物学联系。
原创
博文更新于 2025.12.03 ·
472 阅读 ·
11 点赞 ·
0 评论 ·
4 收藏

在 GitHub 上生成和配置个人访问令牌(PAT),并将其用于 R 环境中的凭证管理和包安装。

通过生成 GitHub 的个人访问令牌(PAT)并配置到 R 环境中,你能够在 R 中安全地使用 GitHub 凭证进行包安装、推送和拉取操作。生成 GitHub PAT。使用gitcreds包将 PAT 配置到 R 中。使用remotes包进行 GitHub 包安装。如果按照这些步骤操作,应该能够避免遇到 401 错误并顺利安装所需的 GitHub 包。
原创
博文更新于 2025.12.02 ·
795 阅读 ·
29 点赞 ·
0 评论 ·
27 收藏

AIDD-人工智能药物设计-ChemOrch:用合成数据训练大模型的化学能力

但分值最高的分子,结构可能高度相似。只要输入稀有骨架,模型就能保持核心结构不变,为其「装饰」上各种合理的侧链,生成一批拥有该骨架的全新分子。这样,SCM 既保留了 GNN 捕捉到的局部互动信息,又维持了分子的整体结构,避免了关键特征被「磨平」。对于药物研发领域的化学家,解析未知化合物,特别是复杂天然产物的结构,是一项精细的挑战。同时,它在处理真实的实验核磁数据时也表现出良好的「零样本泛化」(zero-shot generalization)能力,即无需预先学习特定分子的实验数据,即可做出可靠预测。
原创
博文更新于 2025.11.27 ·
349 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

AIDD-人工智能药物设计-Peptide2Mol:AI 直接生成模拟多肽的小分子,用于靶向蛋白质结合

这说明,要让模型理解气味,仅有通用的化学知识是不够的,还需要针对嗅觉进行专门训练。研究者还发现,通过「局部精修」策略(部分掩蔽的自回归步骤)优化生成结果后,这些分子在对接打分和结构合理性评估(如 PoseBusters 测试)上的表现得到提升,证明模型能够进行精细的结构优化。这三个模型通过一个「形状 - 框架匹配网络」 (Shape-Frame Matching Network) 紧密协作,确保从表面信息到骨架结构,再到氨基酸序列的每一步都相互对齐兼容,保证最终生成的蛋白质分子在几何与化学上高度自洽。
原创
博文更新于 2025.11.27 ·
370 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

AIDD-人工智能药物设计-SIGMADOCK:用片段扩散模型革新分子对接

理论上,只要在这张地图上找到「宝藏」的位置,再解码回具体的肽序列,就完成了分子设计。在经典的 BioSNAP DTI 测试中,当面对训练中未见过的蛋白质时,BioCG 的 AUC 指标达到 89.31%,比之前的最优方法高出 14.3%。结合 PCA 这类经典统计工具对 AI 生成的表征空间进行预处理,并利用基本的化学知识(如物理化学性质),可以用更少的实验数据高效解决问题。但这个方法要求路面是连续平滑的「山坡」,而由离散碱基组成的 mRNA 序列则像一级级的「台阶」,无法直接计算梯度。
原创
博文更新于 2025.11.27 ·
468 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

AIDD-人工智能药物设计-AI 智能体 IMMUNIA:发掘免疫治疗新靶点

为精确模拟 DNA 双螺旋中 GC/AT 碱基对的质子转移,研究者在一个基础模型上,仅增加 2300 个 MP2 级别的计算数据点,就将关键能垒的精度提升到昂贵的 CCSD(T) 级别。论文强调,不存在「一招鲜」的模型。一篇预印本论文介绍了一种名为 IMMUNIA 的新方法,它组织多个不同的大语言模型协同工作,像一个专家委员会,专门寻找新的免疫治疗靶点。他们使用 AlphaFold3 这类能精准预测蛋白质结构的 AI,在蛋白质的关键位置引入盐桥和金属配位等化学键,增加了分子内部的连接点,提升了整体稳定性。
原创
博文更新于 2025.11.24 ·
56 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AIDD-人工智能药物设计-eptide2Mol:AI 直接生成模拟多肽的小分子,用于靶向蛋白质结合

这说明,要让模型理解气味,仅有通用的化学知识是不够的,还需要针对嗅觉进行专门训练。研究者还发现,通过「局部精修」策略(部分掩蔽的自回归步骤)优化生成结果后,这些分子在对接打分和结构合理性评估(如 PoseBusters 测试)上的表现得到提升,证明模型能够进行精细的结构优化。这三个模型通过一个「形状 - 框架匹配网络」 (Shape-Frame Matching Network) 紧密协作,确保从表面信息到骨架结构,再到氨基酸序列的每一步都相互对齐兼容,保证最终生成的蛋白质分子在几何与化学上高度自洽。
原创
博文更新于 2025.11.24 ·
233 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

为什么 Jupyter 修改了 Python 文件后不生效?——你必须知道的 Restart / Reload 机制

改了 20 行代码运行依然是旧结果以为自己没保存以为路径不对以为 import 什么地方错了花 30 分钟 debug……从此世界清静了。问题原因解决方式修改模块后 Notebook 不生效Notebook 缓存了旧版本Restart kernel(最推荐)想不重启就更新模块手动 reload输出仍旧是中文Notebook 仍在运行旧版本模块查看路径 + Restart。
原创
博文更新于 2025.11.24 ·
925 阅读 ·
29 点赞 ·
0 评论 ·
10 收藏

安装tensorflow出错

确保你的网络连接稳定。如果你的网络速度较慢或者不稳定,可能会导致文件下载超时。尝试使用一个更快或者更稳定的网络连接。你可以手动下载 TensorFlow 的。源可能会受限,可以切换到国内的镜像源来加速下载。**,通常发生在网络连接不稳定或者下载速度慢的情况下。如果以上方法不行,你也可以尝试重新安装所有依赖项,特别是在虚拟环境中安装。这将把超时时间设置为120秒,给下载更多时间。如果你在下载文件时遇到断网问题,使用。下载文件时发生的,导致连接超时。,通过更快速的国内镜像进行下载。下载时的超时时间,使用。
原创
博文更新于 2025.11.18 ·
243 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

AIDD-人工智能药物设计-DeepVul:用 Transformer 预测药物反应

它在分子特性分布的 KL 散度(Kullback-Leibler divergence)上,比 DiGress 低近一半,比 JTVAE 低九成以上,表明其生成的分子特性更接近真实分子。专家评估发现,它生成的无环或脂肪族分子与真实分子的分布几乎没有区别,证明了模型探索不同化学结构空间的能力。例如,如果细胞系 A 的基因表达谱,与敲除基因 X 后的细胞系 B 相似,模型就会推断基因 X 可能是细胞系 A 的「阿喀琉斯之踵」。两者结合,让模型既能看到「树木」,也能看到「森林」,对药物分子的理解更加立体。
原创
博文更新于 2025.11.10 ·
645 阅读 ·
11 点赞 ·
0 评论 ·
24 收藏

AIDD-人工智能药物设计-AI 生成双靶点分子,还保证能合成

最终,算法会提供一组位于「帕累托前沿」的分子,它们代表了不同目标间的最佳权衡(trade-off),供研发团队选择。因此,CombiMOTS 拼接出的每个分子,其合成路线从设计之初就基本明确,连接了计算设计与实验室合成,避免了「纸上谈兵」的困境。这证明,蛋白质能否结合细胞膜,主要取决于其表面形状是否匹配,就像钥匙的形状必须先对上锁孔,材质是次要的。这项工作针对计算药物化学的核心难题——溶剂化效应,结合了精确的物理模型(AMOEBA)和高效的采样算法(Lambda-ABF-OPES),提供了一个可靠的工具。
原创
博文更新于 2025.11.10 ·
671 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏

AIDD-人工智能药物设计-M-GLC: 用化学基元破解少样本预测难题

它将抗体 - 抗原复合物视为一个由氨基酸(节点)和相互作用(弹簧)组成的弹性网络模型(Elastic Network Models),再用一个卷积神经网络(Convolutional Neural Network, CNN)学习该网络的动态特性,理解复合物结合时的动态变化。化学家看到新分子时,会将其拆解成熟悉的片段(基元,motifs),并根据这些片段的已知性质来推断整个分子的性质。该工具开源,每个模块都封装在独立的 Conda 环境中,保证了研究结果的可复现性,为探索微生物肽库提供了新的可能。
原创
博文更新于 2025.11.10 ·
721 阅读 ·
21 点赞 ·
0 评论 ·
27 收藏

TriDS:AI 原生分子对接,统一高效

这种目标导向的搜索方式,大幅提升了构象采样的效率。传统的分子对接(Molecular Docking)流程繁琐,需要分步进行:先用一个程序预测蛋白上的结合口袋,再用另一个程序尝试放入小分子的各种构象(构象采样),最后可能还要换个打分函数重新评估最佳构象。在这一任务上的显著进步,说明 MuMo 的融合策略抓住了关键,让模型对分子结构的理解更深刻、更鲁棒。如果缺少目标蛋白与配体的复合物结构,但拥有该蛋白与类似配体的结构,或同源蛋白的结构,Pearl 可以将这些信息作为模板,提高预测的准确性。
原创
博文更新于 2025.11.10 ·
662 阅读 ·
22 点赞 ·
0 评论 ·
24 收藏

AI 赋能蛋白质设计:免费交互式教程 DL4Proteins

在 MIMIC III 和 IV 大型医疗数据集上的测试表明,SubRec 推荐的药物与医生处方高度一致,且引发潜在药物相互作用(drug-drug interaction)的风险更低,提升了用药安全性。此举减少了模型训练的计算量,并增强了推荐过程的可控性。它能在没有明确结构输入的情况下,准确圈定蛋白质上的多肽结合区域,这对设计新的多肽药物或抑制剂具有潜力。SubRec 为个性化用药推荐提供了新思路:将药物的化学本质与患者的临床数据结合,才能实现智能且负责任的推荐,推动精准医疗的发展。
原创
博文更新于 2025.11.10 ·
1088 阅读 ·
25 点赞 ·
0 评论 ·
27 收藏
加载更多