个人成就
TA的专栏
-
mac 12篇 -
Python3 22篇 -
web前端面试 -
mac系统了命令 3篇 -
mac系统 3篇 -
web前端 53篇 -
python 6篇 -
终端 5篇 -
uni-app 10篇 -
JavaScript高级 8篇 -
css 4篇 -
vim 2篇 -
vuejs 11篇 -
JavaScript 5篇 -
vue.js 3篇 -
vue开发工具 3篇 -
慕课网 1篇 -
node.js 1篇 -
小程序 1篇 -
vue进阶 -
前端 11篇 -
http&ajax 2篇 -
散文 2篇 -
标签 1篇 -
bash 1篇 -
向日葵 1篇 -
gulp打包工具 1篇 -
oauth2.0 1篇 -
权限限制 1篇 -
vue-token 1篇 -
mac教程 1篇 -
代码片段 1篇 -
数组 -
toString() 1篇 -
笔记 1篇 -
yarn 1篇 -
node-sass 1篇 -
sql 1篇 -
vue-cli4 2篇 -
路径别名配置 1篇 -
重定向 1篇 -
cookie与session 1篇 -
git 1篇 -
vscode 1篇 -
key:value 1篇 -
node 2篇 -
数据集 1篇 -
express 1篇 -
docker 1篇 -
vye.js -
2020年 -
2020 -
vue-cli4.2.2 1篇 -
yarn 1篇 -
vue-router 1篇 -
vue-cli4.x 1篇 -
性能优化 1篇 -
爬虫 1篇 -
nodemon 1篇 -
IE兼容性 1篇 -
脚手架 1篇 -
包管理器 -
echarts 1篇 -
设计模式 2篇 -
解压 1篇 -
unzip 1篇 -
axios 1篇 -
vue-cli3 2篇 -
eslint 1篇 -
js 1篇 -
WEB前端知识 47篇 -
SSM 1篇 -
canvas 2篇 -
html 6篇 -
web 20篇 -
javascript 26篇 -
安全 1篇 -
w ^微信小程序 1篇 -
研发管理 1篇 -
代码管理 1篇 -
数据库 2篇 -
mysql 3篇 -
JavaScript的 17篇 -
Ës6 15篇 -
web前短学习路线 12篇 -
Vue 3篇 -
mac os 2篇 -
http协议 1篇 -
css3 1篇 -
react 8篇 -
Charles 1篇 -
ajax 2篇 -
jsonp 1篇 -
promise 3篇 -
继承 2篇 -
原型继承 2篇 -
拷贝继承 2篇 -
作用域 2篇 -
async 2篇 -
js封装 1篇 -
微信小程序 2篇 -
云开发 1篇 -
封装 1篇 -
正则表达式 1篇 -
java 1篇 -
idea 1篇
TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 3
TA参与的活动 2
兴趣领域
设置
创作活动更多

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
32人参与 去参加
- 最近
- 文章
- 专栏
- 代码仓
- 资源
- 收藏
- 关注/订阅/互动
更多


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频

搜索 取消
在药物研发领域,我们总是在信息的海洋里捞针。数据很多,从基因到疾病再到化合物,关系错综复杂。药物重定位(Drug Repurposing),也就是老药新用,是条捷径,但挑战在于如何高效地发现药物和新适应症之间的潜在联系。传统的计算方法常常像个黑箱,给你一个「可能有效」的答案,但你问它为什么,它就沉默了。这对于需要严谨验证的科学家来说,是完全不够的。这项研究拿出的方案,就像是给这个黑箱装上了一个透明的观察窗。它的工作原理是这样的:第一步,打好地基。研究者使用了药物重定位知识图谱(DRKG),这个图谱就像一张巨






























