IsLand1314~
码龄2年
求更新 关注
提问 私信
  • 博客:720,919
    社区:677
    动态:31,153
    视频:11,453
    764,202
    总访问量
  • 276
    原创
  • 382
    排名
  • 12,341
    粉丝
  • 553
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2023-10-31

个人简介:热衷于在c++,Java领域学习,喜欢用博客来记录自己学习的点点滴滴,希望我的博客可以给你带来一些帮助。 笔记记录 gitee网站:https://gitee.com/island0920/projects

博客简介:

island1314的博客

查看详细资料
个人成就
  • 优质创作者: C/C++技术领域
  • 获得20,071次点赞
  • 内容获得13,119次评论
  • 获得16,750次收藏
  • 代码片获得3,957次分享
  • 原力等级
    原力等级
    9
    原力分
    9,950
    本月获得
    60
创作历程
  • 164篇
    2025年
  • 113篇
    2024年
成就勋章
TA的专栏
  • 汇编语言程序设计
    2篇
  • 环境及工具配置搭建
    1篇
  • Python
    1篇
  • 机器学习
    2篇
  • 期末复习
    7篇
  • 协议
  • Protocol Buffers
    2篇
  • 数据库
  • MySQL
    11篇
  • Redis
    12篇
  • Docker
    4篇
  • AccessMent
    16篇
  • 操作系统
    5篇
  • 项目
    1篇
  • Json-Rpc
    3篇
  • Qt项目
  • C++ 仿muduo 库
    3篇
  • 前端
  • Vue
    3篇
  • HTML + CSS + JS
    3篇
  • Linux学习
    26篇
  • Linux 服务器问题排查
    1篇
  • 网络
    20篇
  • QT
    16篇
  • java学习
    17篇
  • C++
  • CMake
    9篇
  • C++学习—进步之路
    50篇
  • C++ 框架/库
    8篇
  • 数据结构
    3篇
  • 算法
    15篇
  • 题目训练
    13篇
  • C/C++笔记
    3篇
  • Go
    8篇
  • git
    6篇

TA关注的专栏 24

TA关注的收藏夹 0

TA关注的社区 30

TA参与的活动 2

兴趣领域 设置
  • Java
    java
  • 编程语言
    c++
  • 数据结构与算法
    算法数据结构
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 收藏
  • 关注/订阅/互动
  • 视频
  • 最近

  • 文章

  • 专栏

  • 收藏

  • 关注/订阅/互动

  • 视频

搜索 取消

【Docker#4】Docker Registry 镜像仓库详述

Docker Registry 概述 Docker Registry是用于存储、管理和分发Docker镜像的核心组件,提供镜像仓库管理、用户认证和索引功能。 主要特点 镜像管理:Registry管理多个Repository,每个Repository包含不同版本的镜像(通过Tag区分) 分类: 公共仓库(如Docker Hub) 私有仓库(如Harbor) 赞助/供应商仓库 功能类比:类似图书馆系统,Registry是图书馆总部,Repository是图书系列,Tag是版本号 应用场景 公共仓库适合开源项目和
原创
博文更新于 8 小时前 ·
305 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

【Docker#3】Window 和 Linux 上 docker安装 & 相关知识

LXC(LinuX Containers)是Linux内核的轻量级虚拟化技术,通过容器隔离应用环境。文章介绍了LXC的基本概念、常用命令(如创建、启动和管理容器),以及在Ubuntu系统上的安装与使用示例。同时对比了Docker作为LXC增强版的特点,指出Docker通过镜像技术简化了容器管理,使应用部署更便捷。Docker早期依赖LXC引擎,后转向自主开发的libcontainer,推动了容器技术的普及。
原创
博文更新于 2025.12.17 ·
1275 阅读 ·
33 点赞 ·
3 评论 ·
27 收藏

C & C++ 关于 字符串 的复制函数

正确做法:使用。
原创
博文更新于 2025.12.17 ·
931 阅读 ·
6 点赞 ·
0 评论 ·
23 收藏

【CMake#9】使用 CMake 管理构建过程的开源 CMake 项目

📃个人主页:island1314。
原创
博文更新于 2025.12.14 ·
939 阅读 ·
20 点赞 ·
0 评论 ·
27 收藏

【C++现代#13】C++17 三大核心库特性详解:std::string_view、文件系统库(<filesystem>)与并行算法

📃个人主页:island1314。
原创
博文更新于 2025.12.03 ·
836 阅读 ·
10 点赞 ·
0 评论 ·
24 收藏

【C++现代#12】C++17 三大值语义容器详解:std::optional、std::variant 与 std::any

是 C++17 引入的一种类型安全的联合体(Union),它允许可变类型的数据存储在一个统一的类型中。传统联合体(union)的问题:C风格或 C++的普通 union 不是类型安全的。我们需要自己记住当前存储的是哪种类型,如果访问错了(比如在一个存储 int 的 union 上读取 float),会导致未定义行为,而且它无法处理非平凡类型(如 std::string)std::variant 的优势是它解决了所有这些问题。
原创
博文更新于 2025.12.03 ·
684 阅读 ·
30 点赞 ·
0 评论 ·
18 收藏

【C++现代#11】C++17 核心新特性全解析(续):__has_include、标准化属性体系、求值顺序规则革新

📃个人主页:island1314⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞C++17 引入了预处理器指令,用于 在编译期检查某个头文件是否存在。如果指定的头文件存在,返回,否则返回。语法使用场景和优势示例注意与的区别:用于检查是否定义了某个宏,而专门用于检查头文件是否存在。属性是为代码实体(变量、函数、类等)添加额外信息的一种机制,这些信息可以帮助编译器进行优化、生成警告或错误,以及指导静态分析工具。属性的通用规则在 C++11 之前,各编译器使用自己的语法。11.1 C+
原创
博文更新于 2025.12.03 ·
744 阅读 ·
15 点赞 ·
0 评论 ·
30 收藏

【C++现代#10】C++17 核心新特性全解析(续):if constexpr、折叠表达式、类模板参数推导、非类型模板参数与嵌套命名空间

折叠表达式是 C++17 引入的一种新特性,它允许对模板参数包进行递归操作,能够优雅且高效地处理可变参数模板中的参数。这种表达式可以应用于对参数包的每个元素执行相同的计算或比较操作。语法格式(一)一元右折叠:语法形式为,其中init是初始值,op是操作符,params是参数包。计算顺序是从右到左。// 利用一元右折叠计算数组元素的总和// 输出 15return 0;在这个示例中,表示将数组中的每个元素依次与前面的累加结果相加,从右向左折叠计算。(二)一元左折叠:语法形式为,其中op是操作符,
原创
博文更新于 2025.12.03 ·
799 阅读 ·
28 点赞 ·
0 评论 ·
21 收藏

【C++现代#9】C++17 四大核心新特性详解:结构化绑定、inline 变量、if/switch 初始化与强制拷贝省略

强制省略拷贝是指编译器必须省略某些情况下的拷贝或移动构造函数的调用,从而提升性能。这种优化在 C++17 中成为强制性的,而不是以往的可选优化。拷贝省略(Copy Elision)是编译器的一种优化技术,目的是避免创建不必要的临时对象,从而提升性能。最常见的拷贝省略形式就是 **返回值优化(unnamedreturn value optimization,URVO)**和命名返回值优化(NamedReturn Value Optimization, NRVO)在哪些情况下会应用强制省略拷贝?
原创
博文更新于 2025.12.03 ·
901 阅读 ·
9 点赞 ·
0 评论 ·
23 收藏

谷歌Nano Banana 2实测:推理式AI绘图碾压全场,中文长文本渲染与DeepSider国内直连方案详解

Nano Banana 2不仅会自动推理,思考用户给出的提示词,还会自动补完用户的深层次需求,并根据自己的最新知识库进行填充。你可以一边在网页上刷视频,一边让DeepSider的各个模型在旁边替你画图、写代码、解析文档,非常便捷。相对其他方法,DeepSider一个插件就能体验多款热门AI大模型,对国内用户来说更流畅、更方便。装完插件后,在任何网页上点击右上角的DeepSider图标,就能打开侧边栏选择你需要的模型。欢迎大家分享你的Nano Banana 2生成结果哦,一起来探索更多好玩实用的案例吧~
原创
博文更新于 2025.11.26 ·
616 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

汇编语言程序设计(第二版) 刘慧婷 王庆生主编 -- 期末速成

数据段 (Data Segment):存放程序使用的数据。代码段 (Code Segment):存放程序的指令。堆栈段 (Stack Segment):存放堆栈数据(可选,有时由系统分配)。附加段 (Extra Segment):额外的数据段(可选)。基本结构定义数据段,段名为 DATA;数据定义,如: VAR1 DB 10, 20DATA ENDS;数据段结束定义堆栈段 (可选);堆栈空间定义,如: DW 100H DUP(?STACK ENDS;堆栈段结束定义代码段,段名为 CODE。
原创
博文更新于 2025.11.25 ·
685 阅读 ·
18 点赞 ·
0 评论 ·
22 收藏

超越单核:CANN算子开发中的多核并行与任务切分

当我们掌握了多核并行,我们就打通了从算法到底层硬件的全链路,能够将NPU的澎湃算力,真正、彻底地释放出来。它将我们的角色从一个精雕细琢的“工匠”(优化单核),提升为了一个运筹帷幄的“指挥家”(调度所有核心)。这不再是优化一个“工人”的效率,而是要学会如何成为一个“工厂主管”,将任务合理地分配给所有“工人”,让他们同时开工。这篇文章,我们将踏出单核优化的“舒适区”,进入一个更宏大、性能提升也更显著的领域——,学习如何将一个庞大的任务,分发给NPU上所有的计算核心,实现真正的“全员加速”。
原创
博文更新于 2025.11.20 ·
386 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

超越算子:CANN中的异步编程与流管理,实现图级性能优化

用Profiler一分析,我们会看到一幅熟悉的、令人不安的画面:在两个算子执行的间隙,存在着明显的“空白期”。这些空白,通常是CPU(Host侧)与NPU(Device侧)之间的数据拷贝(H2D/D2H)、或者Host侧准备下一个算子任务所花费的时间。这就像CEO把任务A的指令发给1号车间后,立刻回到办公室,马上开始准备任务B、C、D的指令,让设备和自己都保持忙碌。利用这两个特性,我们就可以设计出经典的**“三流并行”流水线**,来最大化地重叠(Overlap)数据拷贝和计算任务。
原创
博文更新于 2025.11.20 ·
385 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

沉默的性能杀手:揭秘并解决CANN算子中的内存银行冲突

如果一条向量指令需要同时读取32个数据,而这32个数据恰好位于32个不同的银行中,那么这次访问在一个周期内就能完成。内部访存瓶颈(Bank Conflict)**之后,我们的CANN算子,才算真正意义上实现了对硬件能力的极致压榨。是32,那么访问任何一列,都会导致所有32次访问全部集中在一个bank上,性能会急剧下降到无冲突情况的1/32!我们可以在矩阵的每一行末尾,手动添加几个“哑”元素,人为地改变矩阵的宽度。例如,在32个银行的系统中,地址。如果你的算法主要是列访问,一个根本的解决方案是,在将数据从。
原创
博文更新于 2025.11.20 ·
342 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

当CANN算子输出一片“乱码”:我的首次NPU硬件调试实战笔记

后一块数据的结果,不断地覆盖前一块的结果。对于我们开发者来说,最可怕的不是满屏的红色报错,而是一切看起来都正常——程序顺利编译、成功运行——但最终输出的结果却是一堆毫无意义的“乱码”。它不仅会教你如何“写”代码,更重要的是,它会提供工具和平台,让你在实践中学会如何“改”代码,这才是开发者真正的成长之路。预期的结果是一系列清晰的浮点数,而我的算子吐出来的,是一堆“NaN” (Not a Number) 和混乱的0。有了这个强大的工具,我的角色从一个瞎猜的“旁观者”,变成了一个手持“显微镜”的“侦探”。
原创
博文更新于 2025.11.20 ·
454 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

算子的“消失”艺术:揭秘CANN中的算子融合与性能跃迁

摘要:本文深入探讨了CANN中的算子融合技术,该技术通过将多个连续算子自动合并为单一"超级算子",有效解决神经网络模型中频繁的Kernel启动和内存读写开销问题。文章分析了典型计算流程的性能瓶颈,详细阐述了算子融合的工作原理及其带来的性能优势,介绍了模式匹配与图改写的关键技术,并为开发者提供了编写融合友好型算子的最佳实践建议。最后指出开发者需要转变思维,从单一算子优化转向配合编译器实现全局自动优化,以达到最佳性能效果。
原创
博文更新于 2025.11.20 ·
288 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

CANN赋能工业视觉:ResNet模型量化加速实践与性能评估

面对工业质检等场景对AI推理实时性的极致要求,我将目光投向了华为CANN(Compute Architecture for Neural Networks)计算架构。本文以经典的图像分类模型ResNet-50为例,详细展示了如何利用CANN的**离线模型转换(ATC)**和**后训练量化(PTQ)**能力,将模型精度损失控制在1%以内,同时在昇腾AI处理器上实现了超过4倍的推理加速。这一实践证明了CANN在简化部署流程、释放自主创新AI硬件潜能方面的核心价值。
原创
博文更新于 2025.11.17 ·
25320 阅读 ·
27 点赞 ·
0 评论 ·
17 收藏

Qoder 降价,立即生效!首购 2 美金/月

其次,在上下文工程能力方面,Qoder 提供最强的上下文工程能力,可一次检索 10 万个代码文件,结合全球顶尖的大模型能力与 Agent,对大规模代码进行深度语义检索与持续上下文理解,将复杂、多阶段的开发任务拆解并由智能体迭代完成,以“仓库级理解 + 任务化执行”正面应对真实工程的复杂度。自上线开始,Qoder 持续通过技术升级,比如:工程检索准确率提升、智能体工具并行化优化、上下文智能压缩等能力,在保证效果的前提下持续优化单任务的 token 消耗,让开发真切感受到 Credits 越来越耐用。
原创
博文更新于 2025.11.12 ·
403 阅读 ·
5 点赞 ·
1 评论 ·
7 收藏

【C++现代#8】深入浅出 C++14 新特性与实践

C++11及以后版本允许用户定义自己的字面量后缀,用于创建自定义的字面量类型(这是通过重载。
原创
博文更新于 2025.11.08 ·
967 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

【C++现代#7】模板元编程

作用:模板特化是处理泛型编程中“特殊情况”的关键工具。它让我们能够为特定的数据类型提供更高效、更安全或逻辑上更正确的实现。函数重载 vs. 函数模板特化:虽然有时可以使用函数重载来达到类似目的,但特化提供了更细粒度的控制,它仍然是同一个模板家族的成员,只是行为被定制。而重载则是定义一个全新的、独立的函数。在某些情况下,编译器选择重载函数比选择特化版本更复杂,因此通常推荐使用特化来处理特定类型。为什么函数模板不支持偏特化?这是C++标准委员会的一个设计决策。
原创
博文更新于 2025.11.07 ·
610 阅读 ·
22 点赞 ·
1 评论 ·
9 收藏
加载更多