annus mirabilis
码龄1年
求更新 关注
提问 私信
  • 博客:226,397
    社区:1,837
    动态:796
    229,030
    总访问量
  • 108
    原创
  • 1,338
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:吉林省
加入CSDN时间: 2025-03-30
博客简介:

注重AI领域前沿发展

查看详细资料
博客首页
个人成就
  • 屿翼百货商行
  • 获得1,785次点赞
  • 内容获得20次评论
  • 获得1,369次收藏
  • 代码片获得282次分享
  • 博客总排名33,290名
  • 原力等级
    原力等级
    4
    原力分
    728
    本月获得
    5
创作历程
  • 108篇
    2025年
成就勋章
TA的专栏
  • AI搞钱
    付费
    19篇
  • CVT
    1篇
  • AI实战
    77篇
  • Proxy
    1篇
  • Linux
    7篇
TA的推广
兴趣领域 设置
  • 人工智能
    人工智能
  • 前沿技术
    AIGC
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 收藏
  • 社区
  • 最近

  • 文章

  • 专栏

  • 资源

  • 收藏

  • 社区

搜索 取消

Chaos Volume Trend 指標使用說明

ChaosVolumeTrend交易指标结合成交量加权、混沌趋势线和AI算法,提供多空交易信号。主指标通过价格突破趋势线判断入场时机,采用1.618斐波那契比例分步止盈,同时支持回调和挂单策略。副图ChaosMACD指标通过布林带挤压算法识别趋势起始,结合超买超卖信号辅助决策。系统支持突破报警、量能异常报警等功能,推荐在2H/4H周期使用,强调顺势交易,在震荡行情中需平衡盈亏比与胜率。需注意价格突破趋势线时及时止损。
原创
博文更新于 2025.08.06 ·
1732 阅读 ·
15 点赞 ·
1 评论 ·
18 收藏

基于AI学习的交易指标来了:Chaos Volume Trend使用初体验

【摘要】ChaosVolumeTrend"是一款革命性AI智能交易指标,融合AI机器学习算法与经典技术分析。该指标通过三重验证系统(智能趋势线、成交量Delta分析、自适应参数)实现精准预测,能提前识别趋势反转点并过滤市场噪音。其专业警报系统可及时捕捉突破信号,适用于股票、外汇及加密货币等多品种交易,支持全时段智能参数优化,以红绿颜色直观展示趋势方向。
原创
博文更新于 2025.08.03 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阿里巴巴视觉生成大模型1.2.1版本深度部署指南

阿里巴巴最新发布的1.2.1位置系列视觉生成模型,包含1.3B基础版和14B增强版,分别适用于个人开发者和企业级商业应用。该模型支持混合精度训练、动态分辨率适配和多模态输入融合,显著提升了生成效率和质量。部署流程包括环境预配置、Conda环境搭建、核心组件安装和模型权重部署,支持Ubuntu系统和Google Colab云端部署。此外,文章还提供了Web交互界面配置、生成效果优化技巧和故障排查方法,帮助开发者快速搭建和优化视觉生成系统。
原创
博文更新于 2025.05.17 ·
1428 阅读 ·
20 点赞 ·
0 评论 ·
16 收藏

爆炸预警:GPT-5要来了?这不是演习,而是一场 AI 革命!

但对于我们大多数普通用户来说,由于它在推理、灵活性和多任务处理上表现出的强大能力,它很可能会**“感觉”起来就像 AGI 一样强大**,成为当前最接近 AGI 的存在。如果说过去的 GPT 版本像是在不断建造更高的摩天大楼,那么 GPT-5 可能要做的,是重塑整个城市的地基和天际线。虽然开发之路充满荆棘,但“神奇的统一智能”的愿景,以及它将带来的前所未有的能力,无疑是令人兴奋的。GPT-4.5 是现有 GPT 架构的集大成者,它拥有庞大的知识库,对话更自然,幻觉更少,但它依然属于“蛮力计算”的范畴。
原创
博文更新于 2025.05.08 ·
1316 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

Deep Vicky,不用下载代码也能吃透开源项目!

可以直接在网站上输入项目的 GitHub 链接,或者,还有一个更酷更简单的方法:直接在你想看的 GitHub 项目的浏览器地址栏里,把 github.com 改成 deepvicky.com,然后回车,它就能自动帮你把项目导入 Deep Vicky 了,省去了手动复制粘贴链接的步骤。更棒的是,它会直接给出相关的代码来源。总的来说,Deep Vicky 是一个非常实用的 GitHub 项目理解工具,特别是它能够将问答与具体的代码实现关联起来,这一点对于想要深入学习和掌握开源项目的人来说,价值巨大。
原创
博文更新于 2025.05.06 ·
1196 阅读 ·
20 点赞 ·
0 评论 ·
10 收藏

微软的“思考”引擎升级了?Phi-4 Reasoning 模型能否撬动本地AI新未来!

Phi-4 Reasoning 系列模型的推出,或许正在向我们暗示,未来操作系统内置的AI能力,其推理水平可能就是基于类似量级的模型。正如 Andre Karpathy 等技术专家曾讨论过的“认知核心”概念一样,许多人认为,当前大型模型浪费了太多参数去记忆海量琐碎的信息,比如过时的网站信息、SHA 哈希值等——这些信息通过外部查询完全可以获取,模型无需“内置”它们。这是一种典型的蒸馏过程:利用更强大的模型生成数据,然后用这些数据来微调一个较小的(或已有的)模型,使其具备类似的能力。
原创
博文更新于 2025.05.06 ·
1406 阅读 ·
27 点赞 ·
0 评论 ·
15 收藏

为什么有人靠 AI 赚几千万,而我们还在混温饱?我深挖了他们的项目,发现了真正的差距

最近,我在网上看到一些非常厉害的个体案例,他们借助 AI 技术,在短短一两年内就取得了令人难以置信的成功,有人甚至年收入达到了上千万元。看到这些,我不禁反思:为什么同样是“小白”,同样使用着差不多的 AI 工具,他们却能实现财务自由,而我还在为了“混个温饱”而忙碌?好奇心驱使我深入挖掘了这些“超级个体”的故事和打法。经过一番深入剖析后,我终于发现了隐藏在表象之下的,我们与他们之间的真正差距到底在哪里。这篇文章,我想把这些发现跟大家分享。这不是为了贩卖焦虑,而是希望我们能从中学习,找到突破点。
原创
博文更新于 2025.05.05 ·
1280 阅读 ·
17 点赞 ·
0 评论 ·
0 收藏

AI黑话:Agent、MCP、Function Calling…是什么意思?

总之,System Prompt、User Prompt、AI Agent、Agent Tool、Function Calling、MCP 以及最底层的 AI 模型,它们就是这样互相连接又各司其职的。在这种情况下,即使 AI 还是生成了不正确的响应,因为响应格式是固定的,AI 服务端自己就能检测到,并执行重试。AutoGPT 会根据这些信息,生成一段 System Prompt,告诉 AI 模型用户提供了哪些工具(tools)、它们有什么用,以及如果 AI 想使用它们,应该返回什么格式的内容。
原创
博文更新于 2025.05.05 ·
1579 阅读 ·
28 点赞 ·
2 评论 ·
19 收藏

告别CPU思维,拥抱并行世界:AI工程师深入解释GPU架构与执行模型

在向量加法的例子中,一个 Warp 中的 32 个线程可能都在执行“加法”指令,但每个线程操作的是向量中不同的索引位置上的元素。过去,GPU主要用于图形渲染,是游戏玩家的“专属”。虽然全局内存时延高,但 GPU 的其他层级内存(特别是 Shared Memory 和 L1/L2 Cache)以及海量的计算单元和高效的调度机制,能够有效地“隐藏”这种时延,确保计算单元不会长时间空闲等待数据。虽然编写高效的GPU Kernel 是一项复杂的任务,涉及对硬件细节的深刻理解和精妙的代码优化,但基础原理是相通的。
原创
博文更新于 2025.05.04 ·
1429 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

Google Agent space时代,浅谈Agent2Agent (A2A) 协议和挑战!

Google Cloud Next 2025 大会的主角不再是“AI”本身,而是“Agents”!从主题演讲到展区 Demo,“Agent”这个词无处不在。然而,现场 Demo 似乎并未完全兑现 Agents 的宏大愿景。真正让我眼前一亮的,是 Google 重磅发布的 Agent2Agent (A2A) 协议。这可能才是通往 Agent 协作、乃至“Agent 应用商店”时代的关键基石。本文将带你深入解读 A2A 协议是什么、它想解决什么问题、它的潜力何
原创
博文更新于 2025.05.04 ·
1271 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

小米搞出来个MiMo 7B RL模型,真实能力大揭秘!

科技巨头小米正式进军大语言模型领域,推出开源 MiMo 模型家族,其中 MiMo-7B-RL 版宣称在多项能力上可对标 OpenAI。是“狼来了”还是实力派?本文将通过一系列实测,深入剖析 MiMo-7B-RL 的真实表现,揭示其优势与短板,并探讨其背後技术细节。
原创
博文更新于 2025.05.04 ·
2346 阅读 ·
36 点赞 ·
0 评论 ·
31 收藏

全参数解读Qwen 3 系列模型 + 本地部署实操 + 多维度能力深度测评

相较于前代模型和其他同类模型,Qwen 3 在知识问答、逻辑推理、结构化输出、代码生成等多个维度都展现出了显著的进步和强大的通用能力。这是一个非常令人惊喜的发现。在开启“思考模式”后,14B 模型在某些复杂的逻辑推理(如矩阵填充)、需要精确结构化输出和内部计算的任务(如 JSON 格式化)中,表现甚至能够超越参数量远大于它的235B和32B模型。考虑到14B 模型更容易在本地部署,它无疑是资源有限场景下的一个“黑马”选项。
原创
博文更新于 2025.05.03 ·
4291 阅读 ·
12 点赞 ·
0 评论 ·
27 收藏

解锁 Instagram 稳定运营的“秘密武器”——静态代理 IP 来自社区: Proxy, 频道: Proxy, https://bbs.csdn.net/topics/619702443

发布动态 2025.05.03

Agent 进阶必修课!Coze 工作流:解锁智能体处理复杂任务的真正潜力

我们可以用一个简单的日常例子来理解工作流。想象一下,你的目标是从深圳前往上海。实现这个目标有多种方式:飞机、高铁、汽车。选择哪种方式取决于你的具体需求(比如是否紧急、是否需要沿途风景等)。但无论你选择哪种方式,都需要遵循一系列固定的步骤或流程。前往机场 -> 过安检 -> 办理值机/登机 -> 飞行 -> 落地取行李 -> 出机场。这一系列的步骤,就是一个为了达成“从深圳到上海”这个目标的工作流。在这个流程中,每一个步骤(前往机场、过安检等)都可以看作是完成一个特定任务的节点。
原创
博文更新于 2025.05.03 ·
3366 阅读 ·
35 点赞 ·
0 评论 ·
23 收藏

《扣子从入门到精通》:了解字节跳动的AI Agent

這篇文章深入探討了字節跳動的 AI Agent 平台「扣子空間」。文章首先介紹了 AI Agent 的興起背景與核心價值,強調其自主規劃、調用 MCP 工具完成複雜任務的能力,超越了傳統聊天機器人。接著,文章詳解了「扣子空間」的兩種模式(探索與規劃)、MCP 工具集成(如高德地圖、飛書),並通過生成遊戲網頁、行程規劃等實例展示其功能與局限,特別指出 Agent 可能出現上下文丟失等錯誤,強調輸出結果必須人工驗證。最後,文章分析了字節在該領域的優劣勢,並展望 Agent+MCP 結合交易能力的未來趨勢
原创
博文更新于 2025.05.03 ·
1854 阅读 ·
15 点赞 ·
0 评论 ·
18 收藏

AI狂飙:我们正在亲手打开潘多拉魔盒...

第一,全球AI开发者必须像核科学家那样持证上岗。你总不会让高中生随便玩钚元素吧?第二,给AI装上"数字黑匣子",就像飞机的飞行记录仪,每次出事都能追溯。第三,也是最关键的——在座各位现在就可以做点什么。打开手机,把这篇演讲转给那个还觉得"AI就是高级Siri"的朋友。
原创
博文更新于 2025.05.02 ·
698 阅读 ·
8 点赞 ·
0 评论 ·
8 收藏

Google NotebookLM,赋能你的智能知识工作流

在“Process”区域上方,你会看到为每个源文件生成的摘要。点击可以查看详细内容和摘要。
原创
博文更新于 2025.05.02 ·
1829 阅读 ·
17 点赞 ·
0 评论 ·
14 收藏

AI提示词优化五大技巧,瞬间提升10倍效率

谷歌研究显示,成功AI提示词平均需21词(远超多数人输入的9词)。优化提示词质量,可参考五大实战技巧:1. 三的法则要求AI生成3个变体,如“写3版广告语,分别侧重续航、智能驾驶、充电速度”,避免单一答案局限,捕捉用户真实需求。2. 多步骤拆解复杂任务分步处理(如预算申请PPT拆解为数据量化、反驳预判、可视化设计三步),准确率提升67%。3. 模板预建用AI生成场景化模板(如电商运营的直播选品评分表),并优化现有模板:“在周报模板中新增数据异常预警模块”。
原创
博文更新于 2025.05.01 ·
1668 阅读 ·
28 点赞 ·
0 评论 ·
16 收藏

Grok、Gemini、Perplexity、GPT火拼了?深度研究实测

Gemini 的准确率最高,回答详细且精确。Perplexity 准确率也相当不错。ChatGPT 准确率一般,甚至会弄错自己的功能和订阅信息。Grok 的准确率最差,测试问题几乎全错。
原创
博文更新于 2025.04.30 ·
1713 阅读 ·
27 点赞 ·
0 评论 ·
15 收藏

Suno AI 完全上手教程:从文字生成到混音,打造专属音乐库

从简单的文字生成,到复杂的自定义歌词、音频上传、制作翻唱、编辑片段,甚至还有那些能“魔改”演唱方式的隐藏标签,它的功能强大到令人,,,怎么说呢,寝食难安呐!听说了么,一个技术员用ai写歌,几天就赚到了5万块钱,还开通了视频号。甚至能做出像(此处可以脑补一段炸裂或感人的音乐)这样的,或者(此处再脑补一段)这样的歌!要是再一年以前,完全不同音乐的人要想学个吉他都非常难,别说写歌了,但是!Suno 也能搞定!赶紧试试,看看 Suno 是怎么“理解”你的指令的!,保证让你看完就能做出自己的第一首歌,甚至更多!
原创
博文更新于 2025.04.29 ·
5662 阅读 ·
45 点赞 ·
1 评论 ·
16 收藏
加载更多