铁牛武功天下第一
码龄7年
求更新 关注
提问 私信
  • 博客:214,132
    动态:283
    214,415
    总访问量
  • 101
    原创
  • 66
    粉丝
  • 90
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2019-05-11

个人简介:市井长巷,幸会幸会

博客简介:

ice_masters的博客

查看详细资料
个人成就
  • 获得192次点赞
  • 内容获得35次评论
  • 获得530次收藏
  • 代码片获得280次分享
  • 博客总排名221,624名
  • 原力等级
    原力等级
    3
    原力分
    494
    本月获得
    0
创作历程
  • 1篇
    2025年
  • 4篇
    2024年
  • 6篇
    2023年
  • 13篇
    2022年
  • 5篇
    2021年
  • 79篇
    2020年
成就勋章
TA的专栏
  • 日常分享
    24篇
  • 工作中解决问题记录
    27篇
  • 算法学习
    3篇
  • 笔记
    3篇
  • 计算机网络学习路程
    6篇
  • linux使用中排疑解难
    8篇
  • qt学习
    5篇
  • c++study_note
    2篇
  • c++学习
    9篇
  • 重新过c基础
    5篇
  • 嵌入式驱动学习
    23篇
  • 数据结构
    2篇
  • 求职
    1篇
  • 树莓派4学习日常
    5篇
  • about find work
    1篇
  • vs2017
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 3

兴趣领域 设置
  • 嵌入式
    stm32物联网
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AxMath+Mathpix Snipping Tools解决论文写代码的烦恼

快速搞定论文中公式问题
原创
博文更新于 2025.02.28 ·
401 阅读 ·
3 点赞 ·
1 评论 ·
4 收藏

【如何在鼠标右键添加Typora软件(使用脚本)】

下载Typora后,希望右键新建文件时候,可以新建md文件。
原创
博文更新于 2024.09.09 ·
454 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

python中传递任意数量的实参

有时候,你预先不知道函数需要接受多少个实参,好在Python允许函数从调用语句中收集任意数量的实参。一个*是元组,两个是字典。
原创
博文更新于 2024.08.29 ·
519 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

python中列表的复制亦有区别

python中 对列表的复制可以直接新变量名字等于原有列表名字,或者 创建新的列表从原有列表一个个复制进来。
原创
博文更新于 2024.08.29 ·
309 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

破解Typora 2024版本

快速破解typora
原创
博文更新于 2024.08.22 ·
596 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

VectorMagic-位图转矢量图工具

发布资源 2024.06.11 ·
rar

下载github中单独某个子文件方法

中下载文件有很多方法,比如整体打包下载,单独小文件下载。我分享一个怎样下载某个单独文件夹方法。在下载这个E文件夹时候,复制当前的url。然后就可以下载文件夹的压缩文件了。
原创
博文更新于 2023.09.17 ·
1970 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

pycharm安装各种包,包括scipy,pulp方法

使用各种源网站(如https://www.lfd.uci.edu/~gohlke/pythonlibs/#pulp),下载后再导入到pycharm中。在终端输入pip install scipy,然后就会开始下载,可能下载速度不是很快。另外,如果pip没有更新的话,也会影响,你需要在终端输入。用下面这个命令行,在终端pip进我们项目的软件包中。点击加号后,搜到想要的包,下载进去。
原创
博文更新于 2023.08.31 ·
7138 阅读 ·
4 点赞 ·
1 评论 ·
22 收藏

【迪杰斯特拉(Dijkstra)算法】

首先大家前提时是都了解图算法中的深度优先搜索(DFS)和广度优先搜索(BFS)算法。(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。Breadth-first-Search),简称 BFS。是从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点。
原创
博文更新于 2023.05.09 ·
826 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【哈希表】学习记录加代码实现

在数据结构和算法的学习中都要一个词叫做,今天学习记录一下关于它的知识。
原创
博文更新于 2023.03.15 ·
363 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

归并排序的学习过程(代码实现)

归并排序的作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);自下而上的迭代(Divide):将n个元素分成个含n/2个元素的子序列。(Conquer):用合并排序法对两个子序列递归的排序。(Combine):合并两个已排序的子序列已得到排序结果。
原创
博文更新于 2023.03.11 ·
715 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【算法时间复杂度】学习记录

涉及到代码所用时间,我们可以琢磨把代码跑一遍记录一下起始和结束的时间得出整个算法用时,但是很多情况我们是需要理论分析的,不是上机测试,另外硬件的不同也会导致时间有差异。假设有一个旅行商人要拜访n+1个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。上面的程序是两层循环的程序,函数的执行时间是n的2次方关系:n^2+2 ,用O(n^2 )来表示时间复杂度。O(2^n)表示指数复杂度,随着n的增加,算法的执行时间成倍增加,它是一种爆炸式增长的情况。
原创
博文更新于 2023.03.11 ·
292 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

【如何获得二级1024徽章】

获得1024二级徽章
原创
博文更新于 2022.10.24 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【SSIM and PSNR】学习记录

SSIM与PSNR区别
原创
博文更新于 2022.10.23 ·
687 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

关于np.zeros()第三个参数:c代表与c语言类似,行优先;F代表列优先的记录

np.zeros()函数学习记录
原创
博文更新于 2022.07.27 ·
809 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

为什么在python或者说是在pycharm这个IDE打开math模块中的某个函数,只有定义没有实现?

Why do some built-in Python functions only have pass?
原创
博文更新于 2022.07.27 ·
549 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【计算机网络结构中数据链路层的三个基本问题】

在准本复试知识时候,看到有一个关于计算机网络中数据链路层的三个基本问题1、封装成帧封装成帧(framing)就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。确定帧的界限首部和尾部的一个重要作用就是进行帧定界。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。分组交换的一个重要概念:就是所有在因特网上传送的数据都是以分组(即IP数据报)为传送单位。网络层的IP数据报传送到数据链路层就成为帧的数据部分。在帧的数据部分的前面和后面分别添加上
原创
博文更新于 2022.03.18 ·
1404 阅读 ·
2 点赞 ·
2 评论 ·
3 收藏

C语言中宏定义#、##的区别与用法

今天在B站看南京大学蒋炎岩老师《操作系统》时看到一个关于c语言宏定义中##的用法,做一下记录或者我们可以通过gcc -E来看宏展开编译的结果。单井号就是将后面的 宏参数 进行字符串操作,就是将后面的参数用双引号引起来双井号就是用于连接。在后面查到的链接中有个这样的例子:#define PRINT(NAME) printf("token"#NAME"=%d
", token##NAME)调用时候使用: PRINT(9);宏展开即为: printf("token"#9"=%d
",toke
原创
博文更新于 2022.03.09 ·
1313 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【计算机网络中 冲突域、广播域】

学习总结一下计网中关于冲突域和广播域的概念冲突域冲突域是一种物理分段,是指连接在同一物理介质上的所有站点的集合。这些站点之间存在介质争用现象(如传统以太网中的CSMA/CD介质检测原理),也就是它们在数据通信时需要共享某部分公用介质。冲突域指的是不会产生冲突的最小范围。在同一冲突域中的计算机等设备互联时,会通过同一个物理通道,同一时刻只允许一个设备发送的数据在这条通道中通过,其他设备发送的数据则要等到这个通道处于"闲"时才可以通过,否则会出现冲突,这时就可能出现大量的数据包因为延时而被丢弃或者丢失。广
原创
博文更新于 2022.02.28 ·
4701 阅读 ·
2 点赞 ·
0 评论 ·
26 收藏

【子网掩码相关学习记录】

计算机网络微课堂中关于子网掩码的记录诞生背景 要想理解什么是子网掩码,就不能不了解IP地址的构成。互联网是由许多小型网络构成的,每个网络上都有许多主机,这样便构成了一个有层次的结构。IP地址在设计时就考虑到地址分配的层次特点,将每个IP地址都分割成网络号和主机号两部分,以便于IP地址的寻址操作。IP地址的网络号和主机号各是多少位呢?如果不指定,就不知道哪些位是网络号、哪些是主机号,这就需要通过子网掩码来实现。定义 子网掩码(subnet mask)又叫网络掩码、地址掩码、子网络遮罩,它用来指明
原创
博文更新于 2022.02.25 ·
208 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏
加载更多