
企业级大模型开发及应用 - 企业应用大模型的方法
本文介绍了企业应用大模型的三种方法及基座模型选择要点。在基座模型选择上,需考虑性能、预训练数据、规模、开放性和语言支持等因素。企业应用方面:1)大模型+插件可增强信息交互和服务能力;2)大模型+知识库可提升回答准确性和领域专业性;3)大模型+Agent可构建自主决策的智能系统。这三种方法无需修改模型参数,通过外部扩展实现能力增强,为企业构建专属大模型提供了可行路径。
人工智能
DeepSeek
Agent
Prompt
AIGC
AI通识
AI实践
机器学习
Python
ML笔记
大数据
数据思维
数据可视化
数据分析
数据处理
数据采集
移动端
小程序
混合应用
前端
框架
ThreeJS
Vue
jQuery
ExtJS
KendoUI
后端
CakePHP
WAMP
MEAN
软件工程
产品笔记
时间的朋友
心理学
软考
杂记 TA关注的专栏 1
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 11

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
