百鸣
码龄15年
求更新 关注
提问 私信
  • 博客:781,031
    社区:21
    问答:3,697
    784,749
    总访问量
  • 205
    原创
  • 6,778
    粉丝
  • 637
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2011-04-20
博客简介:

百鸣的专栏

查看详细资料
个人成就
  • 获得472次点赞
  • 内容获得97次评论
  • 获得1,046次收藏
  • 代码片获得2,172次分享
  • 博客总排名1,315,274名
创作历程
  • 27篇
    2024年
  • 139篇
    2023年
  • 9篇
    2022年
  • 7篇
    2021年
  • 1篇
    2020年
  • 2篇
    2019年
  • 25篇
    2018年
  • 3篇
    2017年
  • 2篇
    2016年
  • 4篇
    2015年
  • 1篇
    2014年
  • 5篇
    2013年
  • 39篇
    2012年
成就勋章
TA的专栏
  • 云计算
    2篇
  • 播放器
    4篇
  • rtsp
    2篇
  • WebRTC
    2篇
  • vlc
    1篇
  • ICE
    1篇
  • shell
    1篇
  • C++
    44篇
  • C
    30篇
  • Windows 操作系统
    13篇
  • Linux操作系统
    21篇
  • Java
    1篇
  • 数据结构
    3篇
  • 视频智能分析算法
    6篇
  • MFC
    3篇
  • MySQL
    1篇
  • rtp
  • 版本
  • 版本管理
  • QT
  • python
    8篇
  • 深度学习
    2篇
  • 机器学习
    3篇
  • gpu
    1篇
  • cuda
    1篇
  • 容器
    2篇
  • samba
  • 网络
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 32

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习人工智能深度学习
  • 音视频
    音视频视频编解码实时音视频webrtcav1
  • 前沿技术
    5Gc++20c++23
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Google 的 9 年职业生涯回顾

这篇文章是一位前谷歌员工对自己在谷歌九年工作经历的回顾和总结。作者在谷歌的不同团队和产品中工作,包括Bigtable、Persistent Disk和GCE VMs(虚拟机),并分享了他在谷歌的起起落落、心得体会以及从中学到的教训。总结的很好,可以学习一下。
原创
博文更新于 2024.09.04 ·
913 阅读 ·
20 点赞 ·
0 评论 ·
6 收藏

常见音视频组织架构

一般需要根据产品,技术,业务重点进行调整!尤其是做视频会议,可视对讲的场景的团队,涉及到软硬件完整端到端音视频解决方案的公司,仅供参照而已,不用纠结,也涵盖了常见的核心技术的部分!欢迎留言讨论,说看一个团队的组织架构就可以知道这个团队要做什么,反过来也是需要匹配,要做什么,也就决定了一般团队的组织架构了。
原创
博文更新于 2024.08.26 ·
505 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

zlmediakit为何性能如此优秀?

ZLMediaKit在多个层面进行了性能优化,从网络I/O处理到线程管理,再到对C++11新特性的广泛应用,确保了其在高并发场景下的卓越表现。通过这些优化,ZLMediaKit能够高效地处理大量流媒体请求,保持较低的延迟和高吞吐量,是其成为优秀开源媒体服务的关键原因之一。
原创
博文更新于 2024.08.22 ·
1617 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏

媒体服务zlmediakit系统架构图

描述: 序列图展示了ZLMediaKit在处理特定请求时的模块交互过程,如客户端请求拉取流时,各模块的调用顺序和交互细节。描述: 数据流图展示了媒体流从输入到输出在ZLMediaKit系统内的流动路径,包括协议解析、解码处理、缓存、和流分发。这有助于理解系统的内部组成和模块间的相互关系。描述: 整体系统架构图展示了ZLMediaKit的主要组件及其交互方式,包含流媒体接入、处理、存储和分发等主要流程。描述: 日志与监控架构图展示了ZLMediaKit的日志和监控体系,确保系统的可观测性和故障排除能力。
原创
博文更新于 2024.08.22 ·
1082 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

flv和 rtmp视频负载类型的差异

FLV通过VideoTag中的字段直接标记视频类型,而RTMP作为传输协议,通常不直接标记视频类型,而是依赖于传输的音视频数据格式(如FLV)来传递这些信息。在RTMP流中,视频元数据可以通过AMF格式传递,包括编解码器类型、级别、配置文件和其他参数。对于H.264和H.265等编码格式,关键的配置信息(如SPS、PPS)通常在视频流的开始发送,以便于解码器的初始化。
原创
博文更新于 2024.08.22 ·
774 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

flv和rtmp 联系和区别

FLV是一种视频文件格式,由Adobe Systems开发,专为在网页上流式传输视频内容而设计。它是一个容器格式,能够封装视频、音频和元数据流。
原创
博文更新于 2024.08.22 ·
785 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

创业融资终极指南

致敬每一个创业者:在当今的商业世界中,初创企业如雨后春笋般涌现,但它们面临着一个共同的挑战——融资。36氪的《创业融资终极指南》系列文章为创业者提供了一份详尽的融资指导手册,涵盖了从了解投资者到避免融资错误的全过程。以下是对该系列文章的总结。
原创
博文更新于 2024.08.16 ·
655 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

WebRTC ICE配置类型

ICE的不同配置类型(标准ICE、ICE-lite、Trickle ICE)各有其适用场景和优势。标准ICE适用于需要完整连接检查的复杂网络环境,ICE-lite适用于资源受限或网络环境已知的场景,而Trickle ICE适用于需要快速建立连接的场景。选择合适的ICE配置可以根据具体应用的需求和网络环境进行调整。
原创
博文更新于 2024.08.07 ·
1172 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

跟我一起学Makefile

发布资源 2013.04.03 ·
pdf

Docker Desktop Windows 目录介绍

文件和路径对应,主要用于存储 Docker Desktop 的系统级文件和配置。文件和路径对应,主要用于存储 Docker 容器和镜像的数据。了解这些区别可以帮助你更好地管理和维护 Docker Desktop 在 WSL 2 中的环境,以及更高效地进行容器化应用开发和数据管理。如果你在使用过程中需要对 Docker 数据进行备份或迁移,这些信息也会非常有用。
原创
博文更新于 2024.07.17 ·
1273 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

软件产品常见推广渠道

软件产品常见推广渠道,文字越少越重要。
原创
博文更新于 2024.07.08 ·
274 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

2024 世界人工智能大会开幕,有什么值得关注的内容?

2024 世界人工智能大会于 7 月 4 日开幕,有诸多值得关注的内容。大会主题为“以共商促共享 以善治促善智”,包含会议论坛、展览展示、评奖赛事、智能体验 4 个板块,涵盖 AI 伦理治理、大模型、数据、算力、科学智能、新型工业化、自动驾驶、投融资、教育与人才等重点议题。展览规模、参展企业数、亮点展品数、首发新品数均达历史最高。重点围绕核心技术、智能终端、应用赋能三大板块,聚焦大模型、算力、机器人、自动驾驶等重点领域,集中展示了一批“人工智能+”创新应用最新成果,首发一批备受瞩目的创新产品。
原创
博文更新于 2024.07.05 ·
953 阅读 ·
21 点赞 ·
0 评论 ·
8 收藏

不同的llm推理框架

MLC-LLM不仅支持GPU,支持在多种边缘设备(Android或iPhone平台上)本地部署LLM,但是当前支持的模型比较有限。支持多种并行优化策略,支持自研的LLM量化与剪枝方法。llama.cpp是一个支持纯C/C++实现的推理库,无任何依赖,当前已经从仅支持LLAMA扩展到支持其它的LLM。rtp-llm是一个已经商业应用的LLM推理框架,支持了淘宝、天猫、菜鸟、高德等多个部门的LLM推理业务。XInference不仅支持LLM的推理,还支持文生图模型、文本嵌入模型、语音识别模型、多模态模型等。
原创
博文更新于 2024.07.04 ·
1485 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

ollama大模型qwen2:7b性能测试

執行脚本:参照一个csdn用户的分享的脚本。仅供参照,转载请注明出处!
原创
博文更新于 2024.06.28 ·
2372 阅读 ·
4 点赞 ·
0 评论 ·
16 收藏

视频拼接服务分享

支持多个短视频拼接,同时支持配置多个转场设置,多个短视频依次选择多个多个转场效果,若配置1个转场效果则,短视频拼接即使用一个转场, 例如:短视频文件['1.mp4','2.mp4','3.mp4','4.mp4'] 转场设置['circlecrop','circleopen'] 则1.mp4+circlecrop+2.mp4+circleopen+3.mp4+circlecrop+4.mp4。支持H264 MP4码流的视频拼接,例如:['1.mp4','2.mp4','3.mp4']
原创
博文更新于 2024.06.04 ·
1423 阅读 ·
15 点赞 ·
2 评论 ·
20 收藏

H.264 的RTP 三种封包模式

选择合适的H.264 RTP封包模式需要考虑具体应用的需求和网络环境。对于低延迟的应用,Single NAL Unit Mode (模式 0) 是合适的选择;对于需要分片的情况,可以使用Non-Interleaved Mode (模式 1);而在高丢包的环境中,Interleaved Mode (模式 2) 提供了更好的容错能力。
原创
博文更新于 2024.05.20 ·
1031 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

Nvidia官方视频编解码性能

详细的参见官方的链接地址,对于GPU的解码fps能力,可以作为评估参照!
原创
博文更新于 2024.05.16 ·
3686 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多个glibc库存在时如何查看ldd调用的哪个

最后实际加载的是:openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3。但是发现存在多个版本的glibc版本,需要查看具体的库的信息,和相应的关键函数的信息,但是并不知道具体的libc.so.6的路径信息。查看cat /usr/local/bin/ldd 源码信息?是否可以获取有效信息呢?如此的话,就可以查看或者需要加载此路径下的库的相应的信息,或者查看实现了哪些函数的信息!
原创
博文更新于 2024.05.08 ·
369 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

ffmpeg ubuntu18.04编译报错fcntl64

可见版本和ldd匹配,而且此库中并没有实现fcntl64,所以考虑升级glibc的版本,但是由于系统ubuntu18.04和此内核版本官方源提供的匹配版本就是如上的版本,尝试源码编译glibc库31版本,然后手动源码安装成功,ffmpeg可以编译成功,并且不会报错,但是切换到此路径下的glibc库的话,系统很多的命令都会报段错误,所以,glibc并不能如此的在系统下升级。猜测应该是ffmpeg的某些依赖库调用了fcntl64,如此的话,重点就是分析glibc的是否真的存在fcntl64。
原创
博文更新于 2024.05.08 ·
2393 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

ffmpeg视频拼接性能测试

执行结果:frame= 1836 fps= 34 q=-1.0 Lsize= 17465kB time=00:01:13.32 bitrate=1951.4kbits/s speed=1.37x。执行结果:frame= 1836 fps= 34 q=-1.0 Lsize= 17465kB time=00:01:13.32 bitrate=1951.4kbits/s speed=1.37x。8)(cpu解码 gpu编码3090ti) 3090ti。9)(gpu解码 gpu编码3090ti) 3090ti。
原创
博文更新于 2024.05.06 ·
1821 阅读 ·
14 点赞 ·
0 评论 ·
7 收藏
加载更多