无风听海
码龄18年
求更新 关注
提问 私信
  • 博客:496,948
    社区:203
    497,151
    总访问量
  • 343
    原创
  • 7,787
    排名
  • 703
    粉丝
  • 19
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2008-05-31
博客简介:

无风听海

查看详细资料
个人成就
  • 获得2,568次点赞
  • 内容获得32次评论
  • 获得1,857次收藏
  • 代码片获得791次分享
  • 原力等级
    原力等级
    6
    原力分
    2,102
    本月获得
    7
创作历程
  • 170篇
    2025年
  • 1篇
    2024年
  • 29篇
    2023年
  • 24篇
    2022年
  • 27篇
    2021年
  • 8篇
    2013年
  • 43篇
    2012年
  • 52篇
    2011年
  • 24篇
    2010年
  • 2篇
    2009年
成就勋章
TA的专栏
  • 深度学习
    91篇
  • HarmonyOS
    50篇
  • Python
    36篇
  • Linux
    9篇
  • 数据科学
    5篇
  • Java
    9篇
  • elasticsearch
    26篇
  • 工作中的数学
    1篇
  • 算法
    5篇
  • Angular
    1篇
  • JS
    3篇
  • ASP.NET深入解析
    18篇
  • JBPM工作流
    27篇
  • 杂记
    34篇
  • 跟JBPM学企业应用架构
    10篇
  • 生活点滴
    5篇
  • 产品设计
  • 过程管理
  • 翻译
    6篇
  • 行业关注
    3篇
  • 技术背后的故事
    2篇
  • 应用程序集成
    2篇
  • 数据仓库与ETL
    4篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

await中的SynchronizationContext和ExecutionContext

“在哪里执行= “逻辑上下文流动捕获 SynchronizationContext(unless ConfigureAwait(false))捕获 ExecutionContextThreadPool / IOCP / timer 执行 continuation恢复 ExecutionContextPost 到 SynchronizationContext(如果存在)理解这两者,是深入分析 .NET async 线程切换、延迟和潜在死锁的关键。
原创
博文更新于 17 小时前 ·
598 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

async和await的实现机制分析

编译器状态机 + Task continuation + ThreadPool / Context 调度它把“阻塞等待”变成了“未来某时恢复执行”
原创
博文更新于 17 小时前 ·
660 阅读 ·
23 点赞 ·
0 评论 ·
10 收藏

神经网络之经验风险最小化

概念定义优缺点经验风险最小化 (ERM)在训练集上最小化平均损失简单易行,但易过拟合结构风险最小化 (SRM)在 ERM 基础上加入正则项抑制过拟合,更具泛化能力。
原创
博文更新于 2025.11.24 ·
65 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络之向量空间的正交坐标系的数量

在一个nnn维向量空间中,有无数个正交坐标系;它们之间通过正交矩阵连接,形成了一个连续的旋转宇宙。如果你固定空间的几何结构,旋转相机永远拍不完的角度,就是这些无穷多的正交基。要不要我给你展示一下二维空间中所有正交基的“连续变化动画”原理?可以看到VVV如何在单位圆上滑动,把基向量旋转成一整圈。
原创
博文更新于 2025.11.24 ·
414 阅读 ·
4 点赞 ·
1 评论 ·
7 收藏

神经网络之矩阵可以让二维向量填充整个三维空间吗

最多只能把二维输入映射到一个二维子空间(一个平面)中,无法覆盖整个三维空间。它们构成输出空间的正交基,而矩阵的秩告诉我们有多少个这样的方向。所有可能的输出点 ((x_1, x_2, x_1+x_2))你可以让它漂浮在三维空间的任意角度,但它永远没有“厚度”,它确实“进入了三维空间”,但永远无法填满整个体积。它能让输入平面在三维空间里“倾斜、旋转、拉伸”,告诉我们,它能“铺开”输出空间的多少维度。想象输入空间是一块平面橡皮布(二维的)。的输出永远被限制在一个二维子空间中。正好描述了这个平面在三维空间里的。
原创
博文更新于 2025.11.07 ·
766 阅读 ·
27 点赞 ·
0 评论 ·
14 收藏

神经网络之特征分解

当矩阵可被特征分解时,所有的线性组合都可以通过特征向量方向上的伸缩表示,从而把矩阵的作用“分解”成若干独立方向上的缩放。这意味着,线性变换 (A) 对向量 (v) 的作用仅仅是。是正交矩阵(列向量是单位正交的特征向量)。,不会改变方向(方向可能翻转,如果。的一个特征向量,对应特征值。得到对应的非零向量 (v)。个线性无关的特征向量。
原创
博文更新于 2025.11.06 ·
918 阅读 ·
33 点赞 ·
0 评论 ·
9 收藏

神经网络之奇异值分解

对于任意实矩阵A∈Rm×nA∈Rm×nAUΣVTAUΣVTU∈Rm×mU∈Rm×m:左奇异向量矩阵(列正交);V∈Rn×nV∈Rn×n:右奇异向量矩阵(列正交);Σ∈Rm×nΣ∈Rm×n:对角矩阵,对角线非负,元素为奇异值。
原创
博文更新于 2025.11.06 ·
845 阅读 ·
20 点赞 ·
0 评论 ·
5 收藏

神经网络之正交对角化

正交对角化(Orthogonal Diagonalization)指:对一个实对称矩阵A∈Rn×nA∈Rn×n,存在一个正交矩阵Q(Q)Q和一个对角矩阵Λ(\Lambda)ΛAQΛQ⊤AQΛQ⊤Q⊤QIQ⊤QI,列向量是单位向量且两两正交Λ(\Lambda)Λ是对角矩阵:对角线元素是 (A) 的特征值正交对角化把矩阵分解为旋转 + 拉伸 + 旋转的组合定义:实对称矩阵AQΛQ⊤AQΛQ⊤条件。
原创
博文更新于 2025.11.05 ·
1054 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

神经网络之特征值与特征向量

给定一个方阵A∈Rn×nA∈Rn×n,如果存在一个非零向量v≠0(v
eq 0)v0和一个标量λ(\lambda)λ,满足AvλvAvλvv(v)v称为矩阵A(A)A的特征向量λ(\lambda)λ称为矩阵A(A)A的特征值直观理解特征向量是经过矩阵变换A(A)A后,只被拉伸或缩放,而不改变方向的向量。特征值就是这个拉伸/缩放的倍数。
原创
博文更新于 2025.11.05 ·
1039 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

神经网络之线性变换

设有一个从向量空间到向量空间的映射TRn→RmTRn→Rm当且仅当它满足以下两个条件时,称 (T) 为线性变换TxyTxTyTcxcTx∀c∈RTxyTxTyTcxcTx∀c∈R​也就是说:线性变换保持加法和数乘结构,它不会破坏向量之间的线性关系。类型线性几何效果矩阵形式特征缩放✅放大/缩小diagkkdiag(k,k)diagkk改变长度,保持方向旋转✅。
原创
博文更新于 2025.11.04 ·
925 阅读 ·
23 点赞 ·
0 评论 ·
5 收藏

神经网络之反射变换

反射变换(reflection transformation)是一种线性变换,它将空间中的点(或向量)相对于某个**平面(或直线)**进行镜像对称。在二维空间中,它表示相对于一条直线的镜像反射;在三维空间中,它表示相对于一个平面的镜像反射。n( n )n是单位法向量(表示反射平面的法线方向);x∈Rnx∈Rn是任意向量。则反射变换T( T )TTxx−2n⋅xnTxx−2n⋅xn项目内容定义Txx−2n⋅xnT。
原创
博文更新于 2025.11.04 ·
1026 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

神经网络之正交矩阵

核心特征:转置等于逆矩阵Q−1Q⊤Q−1Q⊤;几何意义:保持长度和角度;行列式:+1 表示旋转,−1 表示反射;列向量:单位正交;常见正交矩阵:旋转矩阵、反射矩阵、置换矩阵、单位矩阵等。
原创
博文更新于 2025.11.03 ·
1234 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

神经网络之向量降维

我们进行向量降维,是为了去冗余、降噪声、提取主要语义模式。而之所以能保留语义结构,是因为降维方法抓住了数据中方差最大、最稳定的变化方向这些方向恰好对应于语言的主要语义规律。
原创
博文更新于 2025.11.03 ·
459 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

神经网络之协方差

协方差(Covariance)衡量。对随机变量X和YcovXYE[(X−EX])⋅Y−EY])]对样本数据((X1​Y1​Xn​Yn​))covXYn−11​i1∑n​Xi​−XˉYi​−Yˉ⚡ 核心思想:测量两个变量“共同偏离均值的程度”。
原创
博文更新于 2025.10.31 ·
764 阅读 ·
10 点赞 ·
0 评论 ·
15 收藏

神经网络之矩阵可逆

对于一个n×nn×n方阵A(A)A,如果存在同样大小的矩阵B(B)BABBAInABBAIn​其中In(I_n)In​A(A)A可逆InvertibleNonsingularInvertibleNonsingularBA−1BA−1为A(A)A的逆矩阵简单理解:可逆矩阵就是“可以被反转”的矩阵,类似于数的倒数。
原创
博文更新于 2025.10.31 ·
1029 阅读 ·
21 点赞 ·
0 评论 ·
5 收藏

HarmonyOS之UIAbility 备份恢复

UIAbility 的备份恢复机制用于保障。,提升用户体验的连续性。
原创
博文更新于 2025.10.30 ·
740 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

神经网络之线性相关

设有两个向量(或变量)xx1x2xnyy1y2ynxx1​x2​xn​yy1​y2​yn​如果存在常数ab( a, b )ab,其中b≠0b0xabyxaby那么我们称x 与 y 线性相关(linearly dependent)。若不存在这样的关系,则称它们线性无关(linearly independent)。更一般地,对多个向量v1v2vkv1​v2​vk​。
原创
博文更新于 2025.10.30 ·
1031 阅读 ·
26 点赞 ·
0 评论 ·
5 收藏

神经网络之从向量空间角度理解PPMI矩阵

层面共现矩阵PPMI矩阵向量含义共现次数语义关联强度空间结构频率主导,模糊语义主导,分簇几何表现向量方向杂乱,距离不代表语义向量方向反映语义类别功能词作用拉拢所有词,掩盖语义被压缩到原点整体效果“统计空间”“语义空间”PPMI 把“共现统计的云团”几何地重新拉伸,使向量间的空间距离更接近语义距离。
原创
博文更新于 2025.10.29 ·
1194 阅读 ·
15 点赞 ·
0 评论 ·
5 收藏

神经网络之PPMI矩阵

PMI 衡量两个事件(这里是两个词)之间的关联程度PMIwiwjlog⁡PwiwjPwiPwjPMIwi​wj​logPwi​Pwj​Pwi​wj​​如果两个词独立出现,则PwiwjPwiPwjPwi​wj​Pwi​Pwj​)),PMI = 0如果它们比独立出现更频繁地一起出现→ PMI > 0如果它们几乎从不一起出现 → PMI < 0项目共现矩阵。
原创
博文更新于 2025.10.29 ·
677 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

神经网络之向量相似性

当我们用向量来表示词语、句子或图像时,向量之间的几何关系就代表了它们之间的语义关系。所以,“相似度”就是在数学上量化“语义相似”的方式。我们主要用几种度量来比较两个向量 (a⃗)( \vec{a} )(a) 和 (b⃗)( \vec{b} )(b):定义:KaTeX parse error: Expected 'EOF', got '_' at position 14: \text{cosine_̲similarity} = \…其中:⋅b):内积(点积)(∣∣a⃗∣∣)( ||\vec{a}|| )
原创
博文更新于 2025.10.28 ·
797 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏
加载更多