java
文章平均质量分 85
hefeng_aspnet
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Java 长方体表面积和体积计算程序(Program for Surface Area and Volume of Cuboid)
摘要:长方体是具有6个矩形面、12条棱和8个顶点的三维几何体,其对面平行且面积相等。通过长度(a)、宽度(b)和高度(c)可计算其体积(V=a×b×c)和表面积(S=2(ab+ac+bc))。示例代码展示了如何用Java计算给定长方体的表面积和体积,时间复杂度为O(1)。长方体广泛应用于建筑、家具等领域。原创 2025-12-09 09:05:26 · 4973 阅读 · 0 评论 -
Java 计算球体的体积和表面积(Calculate Volume and Surface area Of Sphere)
本文介绍了球体的基本概念及其体积和表面积的计算方法。球体是三维空间中到定点距离相等的点的集合,常见于自然界中的水滴、气泡等。计算公式为:体积V=(4/3)πr³,表面积S=4πr²。文中提供了Java示例代码,分别计算半径为5和12时的结果,并解释公式应用。算法时间复杂度和辅助空间均为O(1)。最后邀请读者互动点赞收藏。原创 2025-11-18 09:07:45 · 5125 阅读 · 0 评论 -
Java 计算圆锥的体积和表面积(Calculate volume and surface area of a cone)
本文介绍了圆锥的体积和表面积计算方法。圆锥体积公式为V=1/3πr²h,表面积公式为A=πrs+πr²,其中r为底面半径,h为高度,s为斜高。文中提供了两个计算示例(r=5,s=13,h=12和r=6,s=10,h=8)及对应的Java实现代码。该算法的时间复杂度和空间复杂度均为O(1)。原创 2025-11-11 09:06:53 · 5072 阅读 · 0 评论 -
Java 金字塔体积计算程序(Program for volume of Pyramid)
本文介绍了金字塔的基本概念及其不同类型,包括三棱锥、四棱锥、五棱锥和六棱锥,并给出了每种金字塔的体积计算公式。同时提供了Java程序代码示例来计算这些金字塔的体积,展示了不同底面形状金字塔的具体计算方法。文章最后还输出了示例计算结果,并标注了算法的时间复杂度为O(1)。原创 2025-11-04 09:02:06 · 4720 阅读 · 0 评论 -
Java 计算椭球体积的程序(Program to calculate volume of Ellipsoid)
椭球体是一种三维封闭几何体,其所有平面截面均为椭圆或圆。它具有三条相互垂直的对称轴,通常用半轴长度a、b、c表示。当两轴相等时为旋转椭球体,三轴相等则为球体。标准方程为x²/a²+y²/b²+z²/c²=1,体积公式为(4/3)πabc。文中还提供了Java计算椭球体体积的代码示例,时间复杂度为O(1)。椭球体在几何学中具有重要应用价值。原创 2025-10-28 09:35:51 · 1806 阅读 · 0 评论 -
Java 圆台体积和表面积计算程序(Program for Volume and Surface area of Frustum of Cone)
本文介绍了圆锥台(截头圆锥)的体积和表面积计算方法。圆锥台体积公式为V=1/3πh(r²+R²+rR),其中r、R分别为上下圆半径,h为高度。曲面面积公式为CSA=πl(R+r),总表面积TSA=CSA+π(R²+r²),l为斜高。文中提供了两个计算示例和Java实现代码,演示了如何根据给定参数计算圆锥台的体积、曲面面积和总表面积。文章最后包含互动提示,鼓励读者收藏、点赞和评论。原创 2025-10-21 09:03:38 · 799 阅读 · 0 评论 -
Java 求圆柱体的周长(Find the perimeter of a cylinder)
本文介绍了如何通过圆柱体的直径和高度计算其横截面周长。严格来说,三维圆柱体没有周长,但可通过将圆柱体投影为二维矩形来计算其横截面周长。计算公式为:P=2*(d+h),其中d为直径,h为高度。文章提供了Java代码示例,以直径5、高度10为例,计算结果为30单位。该方法时间复杂度为O(1),空间复杂度O(1)。(94字)原创 2025-10-14 09:17:04 · 462 阅读 · 0 评论 -
Java 找到平行四边形的缺失点(Find the Missing Point of Parallelogram)
摘要:文章介绍了两种求解平行四边形缺失点D的方法。第一种方法通过计算斜率和对边距离,利用向量关系找到可能的D点坐标;第二种简化方法直接使用向量加法公式D=A+C-B。提供了Java代码实现,并给出示例输入输出,如输入A(1,0)、B(1,1)、C(0,1)时输出D(0,0)。两种方法的时间复杂度分别为O(log(logn))和O(1),适用于不同编程需求。原创 2025-09-23 09:00:46 · 682 阅读 · 0 评论 -
Java 在给定斜率的线上找到给定距离处的点(Find points at a given distance on a line of given slope)
本文介绍了如何计算与给定点P(x0,y0)距离为L,且位于斜率为M的直线上的两个点。根据斜率M的不同情况采用三种处理方法:当M=0时调整x坐标;当M无限大时调整y坐标;其他情况使用公式计算坐标偏移量。提供了Java实现代码,通过计算dx和dy确定两点位置,并输出结果。算法时间复杂度为O(1),适用于各种编程语言实现。原创 2025-09-16 09:04:47 · 835 阅读 · 0 评论 -
Java 使用中点查找矩形的角(Find Corners of Rectangle using mid points)
本文介绍了一种计算矩形四个顶点坐标的方法。给定矩形AD和BC边的中点坐标(p,q)及长度L,程序通过三种情况计算顶点坐标:当矩形水平或垂直时直接计算位移;当矩形倾斜时,先计算斜率m,再根据距离公式求出位移dx和dy,最后加减相应位移得到四个顶点坐标。文章提供了Java实现代码,并展示了两个示例输入及其输出结果。该方法的时间复杂度和空间复杂度均为O(1)。原创 2025-09-09 09:00:22 · 987 阅读 · 0 评论 -
Java 检查四个点是否构成平行四边形(Check whether four points make a parallelogram)
本文介绍了两种判断二维空间中四个点是否构成平行四边形的方法。第一种方法基于中点性质:计算所有点对的中点,若存在一个中点出现两次且其他中点各出现一次,则构成平行四边形。文章提供了详细的Java实现代码,包括中点计算和统计逻辑。第二种方法使用向量运算,通过计算向量叉积判断对边是否平行。两种方法的时间复杂度均为O(n^2logn),空间复杂度为O(n^2)。文中还给出了示例输入和输出,并附上相关正方形和矩形检测的参考链接。原创 2025-09-02 09:01:17 · 891 阅读 · 0 评论 -
IDEA 中创建 Springboot 项目没有 Java8 选项的解决办法
SpringBoot项目无法选择JDK8的解决方案:由于官方已停止维护SpringBoot 2.X版本(最低要求JDK17),建议改用阿里云镜像地址(start.aliyun.com)创建项目,仍支持JDK8。也可手动修改项目配置(降级SpringBoot版本至2.X并调整JDK版本),但存在兼容风险。推荐使用阿里云镜像方案,操作简单可靠。原有JDK8项目仍可正常开发使用。原创 2025-08-28 10:19:39 · 1057 阅读 · 0 评论 -
解决IntelliJ IDEA中文乱码的核心方法
IntelliJ IDEA中文乱码解决方案:1)统一设置文件编码为UTF-8(FileEncodings);2)修改虚拟机选项添加-Dfile.encoding=UTF-8;3)配置编译器参数(Gradle/Maven项目);4)针对SpringBoot和Tomcat项目特殊设置。建议同时检查字体设置,确保支持中文显示。通过多维度编码设置可有效解决各类中文乱码问题。原创 2025-08-28 09:03:09 · 783 阅读 · 0 评论 -
Java 检查四条线段是否形成一个矩形(Check if four segments form a rectangle)
本文介绍了如何判断四条线段是否能构成矩形的方法。首先需要检查线段端点是否恰好构成4个唯一顶点,然后计算所有顶点间的距离,最多应有3种不同距离(两条边长和一条对角线长),且需满足勾股定理。文章提供了Java示例代码,通过计算点间距离并验证距离关系来判断是否构成矩形,时间复杂度为O(n²logn)。该方法适用于检查任意四条线段是否能够组成矩形。原创 2025-08-26 10:42:19 · 1047 阅读 · 0 评论 -
在 Spring Boot 中配置和使用多个数据源
本文介绍了在SpringBoot应用中配置多数据源的方法。首先说明SpringBoot默认通过DataSourceProperties类映射单数据源配置,然后详细讲解如何通过创建多个配置类(如TodoDatasourceConfiguration)和自定义@ConfigurationProperties前缀来支持多数据源。文章分别说明了在Spring Data JDBC中如何配置多个JdbcTemplate,在JPA中如何为每个数据源单独配置EntityManagerFactory和事务管理器,并指出需要将原创 2025-08-23 09:51:41 · 1026 阅读 · 0 评论 -
解决 Spring Boot 应用程序中的“无法配置数据源”错误
本文介绍了解决Spring Boot应用中"无法配置数据源"错误的方法。通过实现重试机制处理数据库连接问题,文章详细说明了从项目创建到配置的完整流程,包括: 创建Spring项目并添加必要依赖 配置application.properties数据库连接 实现自定义DataSourceConfig类,包含3次重试的自动连接逻辑 创建用户实体、Repository和Controller 测试端点验证功能 该方法有效解决了数据库URL错误、凭据无效或服务器宕机等导致的连接问题,增强了应用的容错原创 2025-08-23 09:22:46 · 1098 阅读 · 0 评论 -
在 Spring Boot 中以编程方式配置数据源(Configure DataSource Programmatically in Spring Boot)
本文介绍了在SpringBoot中以编程方式配置数据源的方法。相比配置文件方式,编程式配置提供更大灵活性,适用于动态数据库连接场景。文章详细说明了使用DataSourceBuilder创建DataSource的步骤,包括设置驱动类名、URL、用户名和密码等关键属性,并提供了完整的代码示例。通过创建DataSourceConfig配置类和HomeController演示了实际应用,展示了如何构建一个完整的SpringBoot项目来实现编程式数据源配置。原创 2025-08-22 09:26:35 · 730 阅读 · 0 评论 -
在 Spring Boot 应用程序中配置多个数据源(Configure Multiple Datasource in Spring Boot Application)
本文介绍了在Spring Boot应用中配置多个MySQL数据库的方法。通过application.properties文件分别配置两个数据源(db1和db2),并创建对应的配置类(Db1Config和Db2Config)来管理各自的EntityManager和事务。示例展示了为两个数据库(db1和db2)分别创建实体类(Product和User)、Repository接口及Service层,通过不同包路径隔离不同数据源的组件。文章最后演示了数据分别存储到不同数据库的效果,实现了在单一Spring Boot原创 2025-08-22 09:09:43 · 1007 阅读 · 0 评论 -
Java 检查给定的四个点是否形成正方形(Check if given four points form a square)
本文介绍了如何判断平面上四个点是否能构成正方形。通过计算各点之间的距离平方(避免开方运算),检查三个条件:1)存在两条相等的边;2)第三条边长度等于前两条边平方和的两倍(勾股定理);3)对角线长度相等。文中提供了Java实现代码,通过计算点对距离并比较验证这些条件。算法时间复杂度为O(1),空间复杂度O(1),适用于快速判断四个给定点是否构成正方形。示例验证了该方法对标准正方形输入返回"是",对非正方形输入返回"否"。原创 2025-08-19 09:04:18 · 1085 阅读 · 0 评论 -
Java 四边形的最大面积(Maximum area of quadrilateral)
摘要:根据Brahmagupta公式,当四边形对角和为180度时,其面积最大。公式为:K=√(s-a)(s-b)(s-c)(s-d),其中s为半周长。给定边长为1、2、1、2时,最大面积为2.00。该Java实现时间复杂度O(logn),空间复杂度O(1)。欢迎提出更优解。原创 2025-08-12 09:18:15 · 485 阅读 · 0 评论 -
Java 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:给定三个不重合的点A、B、C,可生成三个不同的平行四边形。通过将每对边作为相邻边,第三边作为对角线,可计算出第四个点D的坐标(D=Ax+Cx-Bx, Ay+Cy-By)。时间复杂度为O(1),空间复杂度为O(1)。文章提供了Java实现代码和示例,并验证了三个点必须不同的条件。该方法高效可靠,欢迎提出优化建议。原创 2025-08-05 09:00:23 · 1157 阅读 · 0 评论 -
Java 求梯形面积的程序(Program to find area of a Trapezoid)
梯形是至少有一对平行边的凸四边形,平行边称为底边,非平行边称为腿。其面积公式为(上底+下底)×高÷2。示例计算显示:底边8和10、高6的梯形面积为54;底边4和20、高7的面积为84。文末附有Java计算代码,时间复杂度O(1),并附使用说明。原创 2025-07-29 09:30:27 · 695 阅读 · 0 评论 -
Java 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
摘要:本文介绍了梯形的基本概念和计算公式。梯形是一种至少有一对边平行的四边形,其面积公式为0.5*(上底+下底)*高,周长等于四条边之和。文中提供了两个计算实例,并给出了Java语言实现代码示例,包含计算面积和周长的方法。代码时间复杂度为O(1),空间复杂度为O(1)。文章最后还附有提示信息,鼓励读者收藏、点赞和评论。原创 2025-07-22 09:00:40 · 625 阅读 · 0 评论 -
Java 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要:本文介绍了如何计算平行四边形的周长,公式为(2a)+(2b),其中a和b是相邻边长。提供了Java代码示例,输入a=10、b=8时输出36。程序时间复杂度为O(1),空间复杂度O(1)。计算原理基于平行四边形对边相等的特性。原创 2025-07-15 08:55:42 · 264 阅读 · 0 评论 -
Java n条水平平行线与m条垂直平行线相交的平行四边形的数量
该文探讨了计算n条水平平行线与m条垂直平行线相交形成平行四边形数量的方法。核心思路是使用组合数学公式:从n条线选2条的组合数乘以从m条线选2条的组合数(nC2 × mC2)。文章给出了两种Java实现方案:一种是基于动态规划计算二项式系数(时间复杂度O(n²)),另一种是直接应用数学公式n(n-1)/2 × m(m-1)/2(时间复杂度O(1))。当输入n=5,m=5时,两种方法均输出正确结果100。文中包含完整代码示例,并比较了两种方法的时间/空间复杂度。原创 2025-07-08 09:00:19 · 750 阅读 · 0 评论 -
Java 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了解决"定半径圆包含最多点数"问题的两种算法。问题要求找出给定平面点集中能被半径为R的圆包含的最大点数(圆周上的点视为包含在内)。朴素算法通过枚举所有点对构造圆并检查包含点数,时间复杂度为O(n³)。更高效的"角度扫描算法"则通过旋转圆并动态维护包含点数,将复杂度优化至O(n²logn)。该算法利用几何关系计算点的进出角度,通过排序和扫描确定最大包含点数。文章详细阐述了算法原理,并提供了Java实现代码,展示了如何通过数学计算和角度处理来高效解决该几何问题。原创 2025-07-01 08:56:44 · 648 阅读 · 0 评论 -
Java 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文提出了两种算法来寻找包含至少k个点的最小圆半径。第一种方法计算所有点到圆心的欧式距离平方,排序后取第k小的值作为结果,时间复杂度为O(n log n)。第二种方法采用二分查找,在0到最大点间距离范围内搜索最小半径,每次检查是否存在k个点位于圆内,时间复杂度为O(n² log r)。两种方法都给出了Java实现代码示例,适用于以原点为中心的圆,输出结果为半径平方值,其中第二种方法具有更优的时间复杂度。原创 2025-06-24 09:01:33 · 629 阅读 · 0 评论 -
Java 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:已知正方形边长a,其外接圆面积可通过公式(PI*a²)/2计算。原理是外接圆半径等于正方形对角线的一半(r=a√2/2),代入圆面积公式πr²即得结果。示例:当a=6时,面积为56.55。该算法具有O(1)时间/空间复杂度,适用于快速计算。原创 2025-06-17 09:11:21 · 656 阅读 · 0 评论 -
Java 求圆面积的程序(Program to find area of a circle)
给定半径 ( r ),圆的面积可以通过公式 ( \text{面积} = \pi \times r^2 ) 计算,结果需精确到小数点后5位。例如,当 ( r = 5 ) 时,面积为 ( 78.53982 );当 ( r = 2 ) 时,面积为 ( 12.56637 )。示例代码使用Java语言,通过 Math.PI 计算面积,并使用 System.out.printf 格式化输出。该算法的时间复杂度和辅助空间均为 ( O(1) )。原创 2025-06-10 09:03:01 · 4277 阅读 · 0 评论 -
Java 检查一条线是否与圆接触或相交(Check if a line touches or intersects a circle)
本文介绍了如何判断一条直线与圆的位置关系。通过计算圆心到直线的垂直距离,并与圆的半径进行比较,可以确定直线与圆是否相交、相切或位于圆外。具体步骤包括:1)使用公式计算直线与圆心的距离;2)将该距离与半径比较,若距离小于半径则相交,等于半径则相切,大于半径则直线在圆外。文章还提供了一个Java代码示例,展示了如何实现这一判断过程。该方法的时间复杂度为O(log(a²+b²)),空间复杂度为O(1)。原创 2025-06-03 09:01:00 · 10432 阅读 · 0 评论 -
Java 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,原创 2025-05-27 09:03:44 · 14842 阅读 · 0 评论 -
Java 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。原创 2025-05-20 09:06:56 · 14432 阅读 · 0 评论 -
Java 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)原创 2025-05-13 09:05:54 · 9182 阅读 · 0 评论 -
Java 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。原创 2025-05-06 09:00:42 · 7970 阅读 · 0 评论 -
java 计算圆周率的程序(Program to find Circumference of a Circle)
在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。原创 2025-04-22 09:25:43 · 9361 阅读 · 0 评论 -
Java N*M 网格(表格)中的矩形数量
我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。原创 2025-04-15 09:06:51 · 11535 阅读 · 0 评论 -
Java 计算矩形中的正方形数量(Count number of squares in a rectangle)
对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。原创 2025-04-08 10:21:49 · 11612 阅读 · 0 评论 -
Java 检查四个线段是否形成一个矩形(Check if four segments form a rectangle)
首先,我们检查线段的唯一端点总数,如果这些点的数量不等于 4,则线段不能构成矩形。然后我们检查所有点对之间的距离,最多应该有 3 个不同的距离,一个用于对角线,两个用于边,最后我们将检查这三个距离之间的关系,对于构成矩形的线段,这些距离应该满足勾股关系,因为矩形的边和对角线构成直角三角形。如果它们满足上述条件,那么我们将线段构成的多边形标记为矩形,否则不是。输入:segment[] = [(7, 0), (10, 0),输入:segment[] = [(4, 2), (7, 5),这些线段不能组成矩形。原创 2025-04-01 09:05:38 · 10166 阅读 · 0 评论 -
Java 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)
要形成正方形,两个点与“p”的距离必须相同,设该距离为 d。与一个点的距离必须不同于 d,并且必须等于 d 的 2 倍。输入: p1 = { 20, 10 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }输入: p1 = { 20, 20 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }我们还需要检查 q 是否与其他 2 个点的距离相同,并且该距离与 d 相同。a) 由点形成的所有四条边都相同。原创 2025-03-24 09:59:25 · 14168 阅读 · 0 评论 -
Java 使用 Spring Boot 本地集成 DeepSeek
了解如何在本地运行 DeepSeek 的开源模型并将其与 Spring Boot 集成,以构建强大的 AI 应用程序,而无需依赖付费 API人工智能正在以闪电般的速度发展,但运行大型语言模型 (LLM) 往往伴随着对云的依赖、高成本和 API 限制。如果您可以运行强大的人工智能模型,而且是免费的,那会怎样?在本文中,将指导您如何将集成,从而实现,而无需依赖昂贵的基于云的 API。这种设置不仅经济高效,而且速度极快,使其亲身学习 AI 的完美场所。原创 2025-03-20 09:26:04 · 9663 阅读 · 0 评论
分享