c++
文章平均质量分 84
hefeng_aspnet
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
C++ 长方体表面积和体积计算程序(Program for Surface Area and Volume of Cuboid)
本文介绍了长方体的基本特征和计算方法。长方体有6个矩形面、12条棱和8个顶点,其对面平行且面积相等。给出长度(a)、宽度(b)和高度(c)后,可通过公式计算体积(V=abc)和表面积(S=2(ab+ac+bc))。文章提供了计算示例和C++代码实现,时间复杂度为O(1)。长方体广泛应用于箱子、建筑等日常生活场景。原创 2025-12-08 08:39:33 · 5099 阅读 · 0 评论 -
C++ 在 AI 时代的角色,如何支撑 LLM
C++在AI时代仍扮演关键角色:作为高性能计算语言,它在深度学习框架底层实现、并行计算优化和GPU加速中发挥核心作用。通过精细内存管理、多线程支持和CUDA集成,C++为大规模语言模型(LLM)训练提供必需的性能保障。其跨平台特性和工程级可靠性,使其成为构建高效AI系统的重要工具。示例代码展示了C++在矩阵运算、多线程计算和GPU加速中的实际应用,印证了其在AI开发中的不可替代性。原创 2025-11-21 09:09:13 · 6332 阅读 · 0 评论 -
C++ 计算球体的体积和表面积(Calculate Volume and Surface area Of Sphere)
本文介绍了球体的基本概念及其在自然界中的常见性,给出了计算球体体积和表面积的数学公式:体积V=(4/3)πr³,表面积S=4πr²。通过半径=5和12的两个计算示例演示了公式应用,并提供了C++实现代码。代码包含两个独立函数分别计算体积和表面积,时间复杂度为O(1)。文章最后附有互动请求和祝福语。(注:摘要已过滤代码部分,聚焦核心数学内容和结构要点)原创 2025-11-17 09:25:57 · 4956 阅读 · 0 评论 -
C++ 计算圆锥的体积和表面积(Calculate volume and surface area of a cone)
本文介绍了圆锥的体积和表面积计算方法。圆锥体积公式为V=1/3πr²h,表面积公式为A=πrs+πr²,其中r为底面半径,h为高度,s为斜高。通过示例展示了当半径=5、斜高=13、高度=12时,计算得到体积为314.159,表面积为282.743。文章还提供了C++实现代码,时间复杂度为O(1)。最后邀请读者点赞收藏,表达祝福。原创 2025-11-10 09:04:39 · 4579 阅读 · 0 评论 -
C++ 金字塔体积计算程序(Program for volume of Pyramid)
本文介绍了金字塔的几何特性及不同类型金字塔的体积计算方法。文章列举了四棱锥、三棱锥、五棱锥和六棱锥的体积公式,并提供了相应的C++代码实现。各类金字塔的体积计算复杂度均为O(1),代码可直接应用于实际计算。文中还附有示例计算结果,包括三角形、正方形、五边形和六边形底面金字塔的体积值。最后表达了作者对读者互动的期待。原创 2025-11-03 09:02:11 · 3665 阅读 · 0 评论 -
C++ 计算椭球体积的程序(Program to calculate volume of Ellipsoid)
椭球体是一种三维几何体,所有横截面均为椭圆或圆形,具有三条相互垂直的对称轴。其标准方程为x²/a²+y²/b²+z²/c²=1,体积公式为(4/3)πr1r2r3。当三轴相等时为球体,两轴相等时为旋转椭球体。文章还提供了C++计算椭球体体积的代码示例,时间复杂度为O(1)。(92字)原创 2025-10-27 09:03:09 · 1443 阅读 · 0 评论 -
C++ 圆台体积和表面积计算程序(Program for Volume and Surface area of Frustum of Cone)
本文介绍了圆锥台(圆台)的体积和表面积计算方法。圆台由平行于底面的平面截取圆锥形成,其体积公式为 V=1/3πh(r²+R²+rR),曲面面积公式为 CSA=πl(R+r),总表面积公式为 TSA=πl(R+r)+π(R²+r²),其中r、R分别为上下底半径,h为高度,l为斜高。文中给出了两个计算实例和对应的C++代码实现,展示了如何通过这些公式求解圆台的几何参数。最后包含了互动提示,邀请读者点赞收藏。原创 2025-10-20 09:03:08 · 1016 阅读 · 0 评论 -
C++ 求圆柱体的周长(Find the perimeter of a cylinder)
圆柱体周长计算:虽然圆柱体是三维形状,但可以计算其横截面展开后的矩形周长。使用公式 P=2*(d+h),其中d为直径,h为高度。例如直径5、高10时,周长为30。附C++代码实现,时间复杂度O(1)。该计算适用于圆柱体侧面展开图周长的求解。原创 2025-10-13 09:00:04 · 493 阅读 · 0 评论 -
C++ 找到平行四边形的缺失点(Find the Missing Point of Parallelogram)
摘要:本文介绍了如何根据平行四边形的三个已知点计算缺失的第四个点。方法一是利用平行四边形的几何特性(对边平行且相等),通过计算斜率和距离来确定缺失点。方法二采用向量运算公式Dx=Ax+Cx-Bx和Dy=Ay+Cy-By直接求解。两种方法均通过C++代码实现,其中方法二的时间复杂度为O(1)。示例展示了(1,0)(1,1)(0,1)对应缺失点为(0,0),(5,0)(1,1)(2,5)对应(6,4)。原创 2025-09-22 09:01:52 · 991 阅读 · 0 评论 -
C++ 在给定斜率的线上找到给定距离处的点(Find points at a given distance on a line of given slope)
摘要:本文介绍如何通过给定点p(x0,y0)和距离L,找到位于斜率为M的直线上且与p点距离为L的两个点。方法分为三种情况:斜率为零时调整x坐标;斜率无限大时调整y坐标;其他情况通过数学方程求解。利用距离公式计算位移,通过加减位移确定坐标。详细实现可参考相关编程语言的示例文章。原创 2025-09-15 09:02:44 · 801 阅读 · 0 评论 -
C++ 使用中点查找矩形的角(Find Corners of Rectangle using mid points)
摘要:本文介绍如何根据矩形AD和BC边的中点坐标(p,q)及长度L,计算矩形四个顶点A、B、C、D的坐标。通过分析水平、垂直和倾斜三种情况,利用几何原理和斜率公式推导出坐标计算方法。文章提供了C++实现代码,包含三种情况的处理逻辑,时间复杂度为O(1)。示例验证了算法的正确性,输入中点(1,0)、(1,2)和长度2时,输出顶点(0,0)、(0,2)、(2,2)、(2,0)。该方法适用于任意方向的矩形顶点求解。原创 2025-09-08 09:00:54 · 1118 阅读 · 0 评论 -
C++ 检查四个点是否构成平行四边形(Check whether four points make a parallelogram)
本文介绍了两种判断二维空间中四个点是否构成平行四边形的方法。第一种方法基于平行四边形对角线互相平分的性质,通过计算所有点对的中点并统计中点出现次数,若恰好有一个中点出现两次且其他中点各出现一次,则构成平行四边形。第二种方法利用向量运算,通过计算向量AB与CD、AC与BD的叉积是否为零来判断对边是否平行。文中提供了C++代码实现这两种方法,并分析了时间复杂度(O(n²logn))和空间复杂度(O(n²))。示例验证了给定点集[(0,0),(4,0),(1,3),(5,3)]能形成平行四边形。原创 2025-09-01 09:00:48 · 890 阅读 · 0 评论 -
C++ 检查四条线段是否形成一个矩形(Check if four segments form a rectangle)
本文介绍了如何判断四条线段是否能构成矩形。算法通过检查四条线段的端点数量是否为4个,并计算这些点之间的距离关系来验证。关键步骤包括:统计唯一端点数量(必须为4),计算点对间距离(最多3种不同距离),并验证是否满足勾股定理(两条短距离平方和等于最长距离)。文中提供了C++实现代码,时间复杂度为O(n²logn),空间复杂度为O(n)。示例展示了该算法能正确识别有效和无效的矩形构造。原创 2025-08-25 09:07:33 · 1109 阅读 · 0 评论 -
C++ 检查给定的四个点是否形成正方形(Check if given four points form a square)
摘要:判断平面上四个点是否构成正方形,需满足三个条件:1)四条边长度相等;2)相邻边夹角为90度(排除菱形);3)两条对角线长度相等。算法通过计算选定点与其他三点的距离平方,验证是否存在两组相等的边和一组满足勾股定理的对角线(距离平方为边长的两倍)。代码示例展示了如何通过距离平方比较来高效判断,时间复杂度为O(1)。例如输入{(20,10),(10,20),(20,20),(10,10)}时,满足条件输出"Yes"。该方法避免了开方运算,直接比较平方值确保精度。原创 2025-08-18 09:20:45 · 829 阅读 · 0 评论 -
C++ 四边形的最大面积(Maximum area of quadrilateral)
摘要:给定四边形四条边长,求其最大面积可使用Brahmagupta公式。公式基于半周长计算:面积=√[(s-a)(s-b)(s-c)(s-d)],其中s为半周长。当四边形为圆内接四边形时面积最大。示例输入1,2,1,2时输出2.00(构造矩形)。算法时间复杂度O(logn),空间复杂度O(1)。该解法简洁高效,适用于任意边长组合的四边形最大面积计算。原创 2025-08-11 09:35:30 · 415 阅读 · 0 评论 -
C++ 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:给定三个不共线的点A、B、C,可以生成三个不同的平行四边形。通过向量运算,第四点D的坐标可通过公式Dx=Ax+Cx-Bx和Dy=Ay+Cy-By计算。该方法时间复杂度为O(1),空间复杂度为O(1)。文中提供了C++实现示例和具体坐标验证,并证明了三个点必须互不相同才能构成有效平行四边形。原创 2025-08-04 09:11:47 · 453 阅读 · 0 评论 -
C++ 求梯形面积的程序(Program to find area of a Trapezoid)
梯形是至少有一对平行边的凸四边形,平行边为底边,非平行边为腰。其面积公式为:(上底+下底)×高÷2。示例计算显示,当底边为8和10、高6时面积为54;底边4和20、高7时面积为84。文章提供了C++计算梯形面积的代码实现,时间复杂度为O(1)。该算法简单高效,适用于各种梯形面积计算需求。原创 2025-07-28 09:00:11 · 496 阅读 · 0 评论 -
C++ 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
本文介绍了梯形的基本概念和计算方法。梯形是一种至少有一对边平行的四边形,其中平行边称为底,非平行边称为腿,两底间的垂直距离为高。文章给出了梯形面积(0.5*(a+b)*h)和周长(a+b+c+d)的计算公式,并提供了两个具体算例。同时展示了用C++实现计算的代码示例,包含计算函数和主程序,其时间复杂度和空间复杂度均为O(1)。文末附有鼓励互动的内容提示。原创 2025-07-21 09:00:14 · 673 阅读 · 0 评论 -
C++ 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要:本文介绍如何计算平行四边形的周长,其公式为(2a)+(2b)。示例程序使用C语言实现该计算,时间复杂度为O(1)。输入边长a=10和b=8时,输出周长为36.00。平行四边形的特性是对边平行且相等,但角度不一定为直角。该算法简单高效,适合快速计算平行四边形周长。原创 2025-07-14 09:01:19 · 611 阅读 · 0 评论 -
C++ n条水平平行线与m条垂直平行线相交的平行四边形的数量
【摘要】计算n条水平平行线与m条垂直平行线相交形成的平行四边形总数。通过组合数学,平行四边形由任意两条水平线和两条垂直线构成,其数量等于从n条线选2条的组合数乘以从m条线选2条的组合数,即nC2 × mC2。文中给出两种解法:1)动态规划计算组合数(O(n²)时间/空间),2)数学公式直接计算(n(n-1)/2)×(m(m-1)/2)(O(1)时间/空间)。例如,5×5线相交可形成100个平行四边形。文章包含C++实现代码及复杂度分析。原创 2025-07-07 09:00:41 · 1391 阅读 · 0 评论 -
C++ 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了在二维平面中求解给定半径的圆内能包含最多点数的算法。通过角度扫描(Angular Sweep)方法,将朴素算法的O(n³)复杂度优化到O(n²logn)。算法核心是:以每个点P为基准,计算其他点Q进入/离开旋转圆的角度范围,排序后扫描这些角度来统计圆内点数最大值。文中详细阐述了数学原理(利用向量夹角和距离公式)并提供了C++实现代码,包括关键步骤如距离预计算、角度排序和扫描计数。算法最终返回所有基准点中最大包含点数,示例测试输出验证了正确性。原创 2025-06-30 08:52:49 · 1068 阅读 · 0 评论 -
C++ 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文介绍了两种方法来求解包含至少K个点的最小圆半径问题。第一种方法计算每个点到圆心的距离平方并排序,直接取第K小的值作为结果,复杂度O(nlogn)。第二种方法采用二分查找,在[0,最大两点距离]范围内搜索满足条件的最小半径,复杂度O(n²logn)。两种方法都适用于以原点为中心的圆,其中第一种更高效,第二种则更具通用性。示例代码展示了两种实现方式,并给出了输入输出样例。该问题可应用于空间聚类、数据压缩等场景。原创 2025-06-23 09:00:02 · 907 阅读 · 0 评论 -
C++ 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:已知正方形边长a,求其外接圆面积的方法是:外接圆半径等于正方形对角线的一半,即r=(a√2)/2。代入圆面积公式得面积S=πr²=(πa²)/2。示例:a=6时面积为56.55,a=4时为25.13。该算法通过直接计算实现,时间复杂度和空间复杂度均为O(1)。(149字)原创 2025-06-16 09:15:22 · 939 阅读 · 0 评论 -
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,圆的面积可以通过公式 ( \text{面积} = \pi \times r^2 ) 计算,结果需精确到小数点后5位。例如,当 ( r = 5 ) 时,面积为78.53982;当 ( r = 2 ) 时,面积为12.56637。示例代码使用C++实现,通过 M_PI 获取π值,并利用 setprecision(5) 控制输出精度。该算法的时间复杂度和空间复杂度均为O(1),适合快速计算。原创 2025-06-09 09:04:19 · 4612 阅读 · 0 评论 -
C++ 检查一条线是否与圆接触或相交(Check if a line touches or intersects a circle)
给定一个圆的圆心坐标、半径以及一条直线的方程,任务是判断直线与圆的位置关系。通过计算圆心到直线的垂直距离,并与圆的半径比较,可以得出三种可能的结果:1)若距离小于半径,则直线与圆相交;2)若距离等于半径,则直线与圆相切;3)若距离大于半径,则直线在圆外。使用公式 dist = |a*x + b*y + c| / sqrt(a² + b²) 计算距离,并通过比较 dist 和 radius 确定结果。算法的时间复杂度为 O(log(a² + b²)),空间复杂度为 O(1)。原创 2025-06-02 10:16:13 · 11396 阅读 · 0 评论 -
C++ 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,原创 2025-05-26 09:12:00 · 12562 阅读 · 0 评论 -
C++ 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )时间复杂度: O(1)辅助空间: O(1)原创 2025-05-19 09:03:54 · 10845 阅读 · 0 评论 -
C++ 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
要判断两个圆是否相互接触,可以通过计算两个圆心之间的距离并与两圆半径之和或差进行比较。具体步骤如下:首先,计算圆心C1(x1,y1)和C2(x2,y2)之间的距离d,公式为d = sqrt((x1-x2)^2 + (y1-y2)^2)。然后,根据d与两圆半径R1和R2的关系判断两圆的位置关系:如果d <= R1 - R2,圆B位于圆A内;如果d <= R2 - R1,圆A位于圆B内;如果d < R1 + R2,两圆相交;如果d == R1 + R2,两圆相切;否则,两圆不接触。通过这种方法原创 2025-05-12 09:02:19 · 6965 阅读 · 0 评论 -
C++ 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。原创 2025-05-05 12:30:15 · 8552 阅读 · 0 评论 -
C++ 计算圆周率的程序(Program to find Circumference of a Circle)
在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。原创 2025-04-21 09:12:11 · 10917 阅读 · 0 评论 -
C++ N*M 网格(表格)中的矩形数量
我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。原创 2025-04-14 10:16:31 · 11710 阅读 · 0 评论 -
C++ 计算矩形中的正方形数量(Count number of squares in a rectangle)
对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。原创 2025-04-07 09:17:12 · 10489 阅读 · 0 评论 -
C++ 检查四个线段是否形成一个矩形(Check if four segments form a rectangle)
首先,我们检查线段的唯一端点总数,如果这些点的数量不等于 4,则线段不能构成矩形。然后我们检查所有点对之间的距离,最多应该有 3 个不同的距离,一个用于对角线,两个用于边,最后我们将检查这三个距离之间的关系,对于构成矩形的线段,这些距离应该满足勾股关系,因为矩形的边和对角线构成直角三角形。如果它们满足上述条件,那么我们将线段构成的多边形标记为矩形,否则不是。输入:segment[] = [(7, 0), (10, 0),输入:segment[] = [(4, 2), (7, 5),这些线段不能组成矩形。原创 2025-03-31 09:05:19 · 10297 阅读 · 0 评论 -
C++ 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)
要形成正方形,两个点与“p”的距离必须相同,设该距离为 d。与一个点的距离必须不同于 d,并且必须等于 d 的 2 倍。输入: p1 = { 20, 10 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }输入: p1 = { 20, 20 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }我们还需要检查 q 是否与其他 2 个点的距离相同,并且该距离与 d 相同。a) 由点形成的所有四条边都相同。原创 2025-03-24 09:18:31 · 13838 阅读 · 0 评论 -
如何在 C++ 中运行 DeepSeek R1 LLM
DeepSeek R1 是 DeepSeek 公司开发的一款先进的开源大型语言模型。在这里我将尝试下载该模型(我们将使用一个小型的 DeepSeek-R1-Distill-Qwen-1.5B 模型)、转换该模型并通过 llama.cpp 在本地运行该模型。1. 这里我使用的是 Linux Ubuntu-24.04(来自 WSL 2)。原创 2025-03-19 09:29:40 · 11821 阅读 · 0 评论 -
C++ 判断两个矩形是否重叠(Find if two rectangles overlap)
我们需要编写一个函数bool doOverlap(l1, r1, l2, r2),如果两个给定的矩形重叠,则返回 true。一种解决方案是逐个选取一个矩形的所有点,然后查看该点是否位于另一个矩形内。2 ) 一个矩形位于另一个矩形左边缘的左侧。注意,一个矩形可以用两个坐标表示,左上角和右下角。1 ) 一个矩形位于另一个矩形的上边缘上方。给定两个矩形,判断这两个矩形是否重叠。l1 :第一个矩形的左上角坐标。r1 :第一个矩形的右下角坐标。l2 :第二个矩形的左上角坐标。r2 :第二个矩形的右下角坐标。原创 2025-03-17 09:04:40 · 10589 阅读 · 0 评论 -
C++ 如何检查给定点是位于多边形内还是外(How to check if a given point lies inside or outside a polygon)
请注意,如果点位于给定多边形的线或与给定多边形的顶点之一相同,则应返回 true。为了处理这个问题,在检查从“p”到极端的线是否相交后,我们检查“p”是否与多边形当前线的顶点共线。如果共线,则检查点“p”是否位于多边形的当前侧,如果位于,则返回 true,否则返回 false。3、如果交点数为奇数或点位于多边形的边缘,则该点位于多边形内部。如果任何条件都不成立,则该点位于多边形外部。给定一个多边形和一个点 ' p ',判断 ' p ' 是否位于多边形内部。O(n),其中 n 是给定多边形的顶点数。原创 2025-03-10 13:03:11 · 10330 阅读 · 0 评论 -
C++ 矩形面积和周长的程序(Program for Area And Perimeter Of Rectangle)
矩形面积和周长,矩形的四条边并不像正方形那样长度相等,而是彼此相对的边长度相等。它有四条边和四个相等的角,每个角都是 90 度。矩形的两条对角线长度相等。矩形是平面上的平面图形。原创 2025-03-03 09:04:08 · 10325 阅读 · 0 评论 -
c++ 检查给定点是否位于矩形内(Check whether a given point lies inside a rectangle or not)
面积 A = [ x1(y2 – y3) + x2(y3 – y1) + x3(y1-y2)]/2 + [ x1(y4 – y3) + x4(y3 – y1) + x3(y1-y4)]/2。检查点是否位于矩形内的一种方法是使用点在多边形内的算法。设四个角的坐标为 A(x1, y1)、B(x2, y2)、C(x3, y3) 和 D(x4, y4)。的面积,即矩形 ABCD 的面积为三角形 ABC 的面积 + 三角形 ACD 的面积。编写一个函数来检查 P 是否位于给定的矩形内。否则,它位于多边形外。原创 2025-02-24 09:01:33 · 9922 阅读 · 0 评论 -
c++ 使用余弦定理寻找三角形第三边的程序(Program to find third side of triangle using law of cosines)
具体来说,当你知道三角形两条边的长度和中间的角度时,余弦定理可以用来求出三角形第三边的长度。参见此处了解如何求余弦值。假设 a、b、c 是三角形的边,其中 c 是角 C 对面的边。给定两条边 A、B 和角 C。利用余弦定理求出三角形的第三边。O(log(n)),因为使用内置 sqrt 函数。输入:a = 5,b = 8,c = 49。O(1),因为我们不使用任何额外空间。输出:6.04339。原创 2025-02-17 09:04:38 · 11259 阅读 · 0 评论
分享