javascript
文章平均质量分 84
hefeng_aspnet
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
JavaScript 长方体表面积和体积计算程序(Program for Surface Area and Volume of Cuboid)
摘要:长方体是具有6个矩形面、12条棱和8个顶点的三维几何体,其对面平行且面积相等。体积和表面积计算公式分别为V=abc和S=2(ab+ac+bc)。示例展示了如何通过输入长、宽、高计算表面积和体积,并提供了JavaScript代码实现。该算法时间复杂度为O(1),适用于日常物品如箱子、建筑物的计算。原创 2025-12-10 08:48:15 · 4610 阅读 · 0 评论 -
javascript 计算球体的体积和表面积(Calculate Volume and Surface area Of Sphere)
本文介绍了球体的基本概念和计算方法。球体是三维空间中与中心点距离均为半径r的所有点的集合,自然界中常见如水滴、行星等。文章提供了计算球体体积(V=4/3πr³)和表面积(S=4πr²)的公式,并给出半径5和12时的计算示例(如半径5时体积523.60、表面积314.16)。同时附上JavaScript实现代码,时间复杂度为O(1)。文章以互动性结尾,邀请读者点赞评论。原创 2025-11-19 09:19:08 · 5563 阅读 · 0 评论 -
Javascript 计算圆锥的体积和表面积(Calculate volume and surface area of a cone)
本文介绍了圆锥的体积和表面积计算公式及示例。圆锥体积公式为V=1/3πr²h,表面积公式为A=πrs+πr²,其中r为底面半径,h为高,s为斜高。文章给出两个计算实例:当半径5、斜高13、高12时,体积314.159、表面积282.743;当半径6、斜高10、高8时,结果均为301.593。文末附有JavaScript实现代码,时间复杂度O(1)。原创 2025-11-12 09:07:49 · 5162 阅读 · 0 评论 -
Javascript 金字塔体积计算程序(Program for volume of Pyramid)
本文介绍了不同底面形状金字塔(三棱锥、四棱锥、五棱锥、六棱锥)的体积计算公式,并提供了JavaScript代码实现。通过输入底面边长和高,可快速计算出对应金字塔的体积,时间复杂度为O(1)。文章最后附有具体计算示例和结果输出,适合几何学习和编程实践参考。原创 2025-11-05 09:01:34 · 5228 阅读 · 0 评论 -
Javascript 计算椭球体积的程序(Program to calculate volume of Ellipsoid)
摘要:椭球体是一种三维封闭几何体,其所有平面截面都是椭圆或圆形,具有三个相互垂直的对称轴。标准方程为x²/a²+y²/b²+z²/c²=1,体积公式为(4/3)πr1r2r3。当两个轴等长时为旋转椭球体,三轴等长则为球体。文中还提供了计算椭球体积的JavaScript代码示例,输出结果为186.15。椭球体在几何学和工程学中有广泛应用。原创 2025-10-29 09:25:31 · 1725 阅读 · 0 评论 -
JavaScript 圆台体积和表面积计算程序(Program for Volume and Surface area of Frustum of Cone)
本文介绍了圆锥台(截头圆锥)的体积和表面积计算方法。圆锥台的体积公式为V=1/3*πh(r²+R²+rR),曲面面积公式为CSA=πl(R+r),总表面积公式为TSA=πl(R+r)+π(R²+r²),其中r为小圆半径,R为大圆半径,h为高度,l为斜高。文章提供了两个计算示例和相应的JavaScript代码实现,演示了如何通过这些公式计算圆锥台的体积和表面积。最后附有示例代码的输出结果。原创 2025-10-22 09:20:21 · 744 阅读 · 0 评论 -
Javascript 求圆柱体的周长(Find the perimeter of a cylinder)
摘要:圆柱体作为三维图形没有严格意义的周长,但可以通过其侧面展开为矩形来计算"周长"。公式为P=2*(直径+高度),示例中直径5、高度10时周长为30。文章提供了JavaScript代码实现,时间复杂度O(1),并附有互动请求。该计算方法实为圆柱侧面展开矩形的周长求解。原创 2025-10-15 09:01:30 · 371 阅读 · 0 评论 -
JavaScript 找到平行四边形的缺失点(Find the Missing Point of Parallelogram)
摘要:本文介绍了如何根据平行四边形对边平行且相等的性质,通过已知三个顶点坐标求解缺失的第四个顶点D。方法一利用斜率与距离计算,通过求取与已知边平行且等长的点来确定D(时间复杂度O(log logn))。更高效的替代方法直接使用向量运算公式:D(A+C-B)(时间复杂度O(1))。示例验证了两种方法的正确性,如输入A(1,0)、B(1,1)、C(0,1)时输出D(0,0)。算法适用于任意三点组合,可输出多种可能解中的任意一个。原创 2025-09-24 09:01:43 · 1338 阅读 · 0 评论 -
Javascript 在给定斜率的线上找到给定距离处的点(Find points at a given distance on a line of given slope)
本文介绍了如何通过给定点坐标和斜率,计算距离该点为L的两个点坐标的方法。算法针对三种斜率情况分别处理:斜率为0时调整x坐标,斜率为无限大时调整y坐标,其他情况通过公式计算。文中提供了JavaScript实现代码,时间复杂度为O(1),适用于各种编程语言转换。该方法可应用于几何计算、图形处理等领域。原创 2025-09-17 09:07:54 · 898 阅读 · 0 评论 -
Javascript 使用中点查找矩形的角(Find Corners of Rectangle using mid points)
给定矩形两条对边AD和BC的中点坐标(p,q)及长度L,求矩形四个顶点的坐标。分为三种情况处理:1)水平矩形,2)垂直矩形,3)倾斜矩形。前两种情况通过简单几何计算即可,倾斜情况需先计算斜率m,再利用距离公式求出位移dx和dy,最终确定四个顶点的坐标。算法时间复杂度为O(1),空间复杂度为O(1)。示例展示了水平和倾斜两种情况的计算结果。原创 2025-09-10 09:01:18 · 886 阅读 · 0 评论 -
JavaScript 检查四个点是否构成平行四边形(Check whether four points make a parallelogram)
本文介绍了两种判断二维空间中四个点能否构成平行四边形的方法。第一种方法基于对角线中点性质,通过计算所有点对的中点并统计出现次数进行判断。若恰好有一个中点出现两次而其他中点出现一次,则构成平行四边形。第二种方法采用向量运算,通过计算向量间的叉积来验证对边是否平行。文章提供了详细的JavaScript代码实现和示例,时间复杂度为O(p²logp),空间复杂度为O(p²)。该方法可扩展用于判断其他四边形类型,如正方形和长方形。原创 2025-09-03 08:54:02 · 678 阅读 · 0 评论 -
JavaScript 检查四条线段是否形成一个矩形(Check if four segments form a rectangle)
本文介绍了如何判断四条线段能否构成矩形。方法包括:1)检查线段端点是否构成4个不同点;2)计算所有点对间距离,应得到3种距离(两个边长和一个对角线);3)验证这些距离是否满足勾股定理。文章提供了JavaScript实现代码,时间复杂度为O(n²logn)。示例显示,当线段端点形成矩形顶点时返回"是",否则返回"否"。该方法适用于任何编程语言,可扩展用于验证其他多边形。原创 2025-08-27 09:00:20 · 933 阅读 · 0 评论 -
JavaScript 检查给定的四个点是否形成正方形(Check if given four points form a square)
本文介绍了如何判断平面上四个点是否构成正方形的方法。通过计算点之间的距离平方(避免开方运算),检查三个条件:1)四条边长度相等;2)存在两条边夹角为90度;3)两条对角线长度相等。给出了JavaScript实现代码,通过比较基准点到其他三点的距离关系来判断。示例验证了输入点(20,10)、(10,20)、(20,20)、(10,10)能构成正方形。算法时间复杂度为O(1),空间复杂度为O(1)。原创 2025-08-20 09:00:30 · 834 阅读 · 0 评论 -
JavaScript 四边形的最大面积(Maximum area of quadrilateral)
摘要:本文探讨如何根据四边形四条边长求最大面积。当四边形为圆内接四边形时,面积最大,此时可使用Brahmagupta公式计算:先求半周长s=(a+b+c+d)/2,再计算面积K=√[(s-a)(s-b)(s-c)(s-d)]。文中给出了JavaScript实现代码,时间复杂度O(logn),空间复杂度O(1)。示例输入1,2,1,2时输出2.00。该方法适用于任意四边形,当对角和为180度时面积最大化。原创 2025-08-13 09:45:17 · 354 阅读 · 0 评论 -
JavaScript 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:文章探讨了如何通过三个给定坐标点构建平行四边形。通过分析三种可能的边与对角线组合(AB-AC-BC、AB-BC-AC、BC-AC-AB),证明了三种平行四边形构造方式。使用向量运算推导出第四个点的坐标公式(Dx=Ax+Cx-Bx,Dy=Ay+Cy-By),并通过示例验证了该方法。文末提供了JavaScript实现代码,时间复杂度为O(1),并邀请读者提出优化建议。该算法适用于平面几何中的平行四边形构造问题。原创 2025-08-06 09:03:19 · 371 阅读 · 0 评论 -
Javascript 求梯形面积的程序(Program to find area of a Trapezoid)
摘要:梯形是至少有一对平行边的凸四边形,平行边称为底边,其他两边称为腿。其面积计算公式为(底1+底2)×高÷2。示例展示了用JavaScript计算梯形面积的代码实现,时间复杂度为O(1)。计算结果如输入8、10、6时面积为54。该几何概念简单实用,适用于基础数学计算。原创 2025-07-30 09:30:44 · 381 阅读 · 0 评论 -
Javascript 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
梯形是一种至少有一对边平行的四边形,平行边称为底,其他两边为腿,两底间的垂直距离为高。梯形面积公式为0.5*(a+b)*h,周长公式为a+b+c+d。示例计算显示:当a=5,b=6,c=4,d=3,h=8时,面积为44,周长为18;当a=10,b=15,c=14,d=11,h=21时,面积为262.5,周长为50。文末提供了JavaScript实现代码,计算复杂度均为O(1)。原创 2025-07-23 09:00:51 · 429 阅读 · 0 评论 -
在 .NET Core 中创建 Web Socket API
本文介绍了在ASP.NET Core中创建WebSocket API的完整步骤。首先需要创建API项目并在Startup中启用WebSocket支持;然后实现WebSocketHandler类处理连接和消息收发;接着创建WebSocket控制器接受连接请求;最后配置依赖注入并测试API。文章提供了详细的代码示例,包括消息处理逻辑和JavaScript测试客户端代码,帮助开发者快速构建实时通信功能。原创 2025-07-19 13:13:50 · 911 阅读 · 0 评论 -
在 ASP.NET Core 和 JavaScript 中配置 WebSocket
本文介绍了WebSocket协议及其在客户端与服务器通信中的应用。WebSocket通过持久连接实现双向数据交换,适用于实时交互场景。文章详细说明了WebSocket的握手过程、四个核心事件(onopen、onmessage、onerror、onclose)和两个主要方法(send、close)。同时提供了基于Asp.Net MVC Core的WebSocket实现步骤,包括创建Web应用程序、添加JavaScript代码、配置Startup.cs和HomeController等关键环节。通过示例演示了We原创 2025-07-18 10:12:39 · 916 阅读 · 0 评论 -
Javascript 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要:本文介绍了平行四边形周长的计算方法,其公式为(2a)+(2b),其中a和b为相邻边长。通过JavaScript代码示例演示了计算过程,如输入a=10、b=8时输出周长36。该算法具有O(1)的时间复杂度和辅助空间复杂度,适用于快速计算平行四边形周长。(97字)原创 2025-07-16 09:35:03 · 413 阅读 · 0 评论 -
Javascript n条水平平行线与m条垂直平行线相交的平行四边形的数量
摘要: 计算n条水平平行线与m条垂直平行线相交时形成的平行四边形总数。该问题可通过组合数学解决,即从n条线中选2条水平线(nC2)与m条线中选2条垂直线(mC2)的组合数相乘。公式为:(n*(n-1)/2)(m(m-1)/2)。例如,n=5、m=5时输出100。优化后时间复杂度为O(1),空间复杂度为O(1)。原创 2025-07-09 09:03:24 · 956 阅读 · 0 评论 -
在 .NET Core 和 React 中使用 WebSockets 和 SignalR 进行实时数据传输
在本文中,我们探讨了如何在 .NET Core 与 React 应用程序中使用 WebSocket 和 SignalR 实现实时数据传输。利用 SignalR,您可以轻松实现客户端和服务器之间的实时通信,使其成为构建交互式协作 Web 应用程序的理想选择。无论您是构建聊天应用程序、实时仪表板还是多人游戏,SignalR 都能提供向用户提供实时更新所需的工具。原创 2025-07-03 09:23:57 · 1548 阅读 · 0 评论 -
在 React 中使用 WebSockets 构建实时聊天应用程序
本文详细介绍了使用React和WebSocket构建实时聊天应用的完整流程。首先通过Node.js的ws包创建WebSocket服务器端,实现消息的广播功能;然后使用React构建前端界面,通过WebSocket API实现与服务器的双向通信。文章包含具体代码示例,从项目初始化到组件开发的每个步骤,并提供了界面样式说明和测试方法。最后建议了用户认证、消息存储等生产环境增强功能。该指南为开发者提供了实现Web实时通信的实用解决方案,适用于构建消息平台等需要即时交互的应用场景。原创 2025-07-03 09:04:10 · 1128 阅读 · 0 评论 -
JavaScript 角度扫描(给定半径的圆内可以包含的最大点数)
摘要: 本文介绍了一种使用角度扫描算法(Angular Sweep)解决二维平面内定半径圆包含最多点数的优化方法。给定n个点和半径R,算法通过旋转圆并动态维护圆内点计数,将时间复杂度从朴素算法的O(n³)优化至O(n²logn)。核心步骤包括:计算点对距离,确定每个点作为旋转中心时的进入/退出角度,排序后统计最大点数。JavaScript实现展示了算法流程,空间复杂度为O(n)。该方法高效解决了几何覆盖问题,适用于大规模点集分析。原创 2025-07-02 09:00:06 · 895 阅读 · 1 评论 -
使用 Socket.IO 和 TypeScript 由 WebSockets 驱动的聊天应用程序
本文介绍了如何在TypeScript和React中使用Socket.IO构建更复杂的聊天应用,包含用户房间功能。作者通过对比之前基于ws库的项目,展示了Socket.IO的优势:内置房间管理、消息确认和重试机制。文章详细讲解了后端实现(Express+PostgreSQL)和前端集成(React),包括用户认证、房间加入/离开逻辑以及消息传递机制。特别强调了Socket.IO特有的功能如事件确认回调、自动重试和连接恢复,并提供了相关代码示例。最后指出下一步可改进的方向,如水平扩展和部署方案。原创 2025-06-28 11:42:27 · 1098 阅读 · 0 评论 -
TypeScript 中的 WebSocket 入门
本文介绍了如何使用TypeScript和React创建基于WebSocket的简易聊天应用。作者通过monorepo结构搭建了包含客户端和服务端的项目,后端使用ws库和PostgreSQL数据库存储消息,前端通过isomorphic-ws连接WebSocket服务器。文章详细讲解了WebSocket服务器的搭建过程、消息广播机制以及客户端如何接收和显示消息。作者还分享了开发过程中遇到的挑战,如连接稳定性和消息渲染问题,并提出了改进方向(如心跳机制、用户管理)。该项目不仅实现了基础聊天功能,也为后续学习更复杂原创 2025-06-28 10:57:23 · 1178 阅读 · 0 评论 -
Javascript 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文介绍了两种方法求解包含至少k个点的最小圆半径问题。第一种方法通过计算各点到圆心的欧氏距离平方,排序后取第k个值,时间复杂度O(nlogn)。第二种采用二分查找,在0到最大点间距范围内搜索最小半径,每次验证是否存在k个点在候选半径圆内,时间复杂度O(n²logr)。两种方法均以(0,0)为圆心,最终输出半径的平方值。示例展示了输入点[(1,1),(-1,-1),(1,-1)]且k=3时,输出结果为2,对应半径√2的圆。文章提供了完整的JavaScript实现代码。原创 2025-06-25 09:01:02 · 1403 阅读 · 0 评论 -
Javascript 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:计算正方形外接圆面积的公式为(πa²)/2,其中a为正方形边长。推导过程:外接圆半径等于正方形对角线的一半,即r=(a√2)/2,代入圆面积公式πr²即得结果。示例:当a=6时,面积≈56.55。该方法时间复杂度为O(1),高效直接。原创 2025-06-18 09:39:30 · 546 阅读 · 0 评论 -
Javascript 求圆面积的程序(Program to find area of a circle)
本文介绍了如何计算给定半径的圆的面积,并确保结果精确到小数点后5位。使用公式面积=π*r²,其中π取值为3.14159265358979323846。通过示例代码展示了如何实现这一计算,并强调了其时间复杂度和辅助空间均为O(1)。文章还鼓励读者收藏、点赞和评论,以表达对内容的喜爱。原创 2025-06-11 10:05:28 · 4140 阅读 · 0 评论 -
JavaScript 检查一条线是否与圆接触或相交(Check if a line touches or intersects a circle)
本文介绍了如何判断一条直线与圆的位置关系。通过计算圆心到直线的垂直距离,并与圆的半径进行比较,可以确定直线与圆是否相交、相切或位于圆外。具体步骤包括:1)使用公式计算圆心到直线的距离;2)将该距离与半径进行比较,若距离大于半径,则直线在圆外;若等于半径,则直线与圆相切;若小于半径,则直线与圆相交。文章还提供了JavaScript代码示例,展示了如何实现这一算法。该方法的时间复杂度为O(log(a²+b²)),辅助空间复杂度为O(1)。原创 2025-06-04 09:00:02 · 10408 阅读 · 0 评论 -
javascript 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,原创 2025-05-28 09:54:17 · 14526 阅读 · 0 评论 -
Javascript 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。原创 2025-05-21 09:24:25 · 12921 阅读 · 0 评论 -
JavaScript 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)原创 2025-05-14 09:08:24 · 8195 阅读 · 0 评论 -
Javascript 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。原创 2025-05-07 09:12:01 · 8659 阅读 · 0 评论 -
Javascript 计算圆周率的程序(Program to find Circumference of a Circle)
在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。原创 2025-04-23 09:03:19 · 11343 阅读 · 0 评论 -
JavaScript N*M 网格(表格)中的矩形数量
我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。原创 2025-04-16 09:03:25 · 12118 阅读 · 0 评论 -
javascript 计算矩形中的正方形数量(Count number of squares in a rectangle)
对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。原创 2025-04-09 09:39:40 · 12184 阅读 · 0 评论 -
JavaScript 检查四个线段是否形成一个矩形(Check if four segments form a rectangle)
首先,我们检查线段的唯一端点总数,如果这些点的数量不等于 4,则线段不能构成矩形。然后我们检查所有点对之间的距离,最多应该有 3 个不同的距离,一个用于对角线,两个用于边,最后我们将检查这三个距离之间的关系,对于构成矩形的线段,这些距离应该满足勾股关系,因为矩形的边和对角线构成直角三角形。如果它们满足上述条件,那么我们将线段构成的多边形标记为矩形,否则不是。输入:segment[] = [(7, 0), (10, 0),输入:segment[] = [(4, 2), (7, 5),这些线段不能组成矩形。原创 2025-04-02 09:04:37 · 10182 阅读 · 0 评论 -
JavaScript 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)
要形成正方形,两个点与“p”的距离必须相同,设该距离为 d。与一个点的距离必须不同于 d,并且必须等于 d 的 2 倍。输入: p1 = { 20, 10 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }输入: p1 = { 20, 20 }, p2 = { 10, 20 }, p3 = { 20, 20 }, p4 = { 10, 10 }我们还需要检查 q 是否与其他 2 个点的距离相同,并且该距离与 d 相同。a) 由点形成的所有四条边都相同。原创 2025-03-26 09:10:16 · 12426 阅读 · 0 评论 -
javascript 判断两个矩形是否重叠(Find if two rectangles overlap)
我们需要编写一个函数bool doOverlap(l1, r1, l2, r2),如果两个给定的矩形重叠,则返回 true。一种解决方案是逐个选取一个矩形的所有点,然后查看该点是否位于另一个矩形内。2 ) 一个矩形位于另一个矩形左边缘的左侧。注意,一个矩形可以用两个坐标表示,左上角和右下角。1 ) 一个矩形位于另一个矩形的上边缘上方。给定两个矩形,判断这两个矩形是否重叠。l1 :第一个矩形的左上角坐标。r1 :第一个矩形的右下角坐标。l2 :第二个矩形的左上角坐标。r2 :第二个矩形的右下角坐标。原创 2025-03-19 09:17:52 · 11519 阅读 · 0 评论
分享