海森大数据
码龄4年
求更新 关注
提问 私信
  • 博客:402,352
    402,352
    总访问量
  • 363
    原创
  • 9,564
    排名
  • 377
    粉丝
  • 2
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
加入CSDN时间: 2022-01-11
博客简介:

haisendashuju的博客

查看详细资料
个人成就
  • 获得812次点赞
  • 内容获得23次评论
  • 获得972次收藏
  • 原力等级
    原力等级
    6
    原力分
    2,690
    本月获得
    80
创作历程
  • 99篇
    2025年
  • 31篇
    2024年
  • 105篇
    2023年
  • 128篇
    2022年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI赋能靶向蛋白降解:革新药物发现的新引擎

传统的小分子抑制剂通常需要“占据”靶点活性位点以阻断其功能,而靶向蛋白降解技术则利用细胞自身的泛素-蛋白酶体系统,对目标蛋白进行标记并催化性降解,具有作用持久、可靶向“不可成药”靶点等独特优势。随着算法的持续进化、多源数据的融合以及人机协作模式的深化,AI有望系统性地解锁靶向蛋白降解技术的全部潜力,为众多难治性疾病带来全新的治疗希望。,生成式模型如变分自编码器和扩散模型,能够根据特定的几何与化学约束,从头生成具有潜力的新型连接子甚至完整的降解剂分子结构,极大地拓展了化学探索空间。
原创
博文更新于 前天 08:24 ·
181 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

蛋白质AI设计时代的生物安全:筑牢核酸合成的“安检门”

研究团队进行了一次系统的“AI红队”测试:他们利用ProteinMPNN等公开可用的AI蛋白设计工具,对72种已知的危险野生型蛋白进行了大规模“改头换面”,生成了超过7.6万个合成同源序列。其中,AI辅助的蛋白质设计尤为引人瞩目,它让科学家得以在浩瀚的“蛋白宇宙”中高效探索,定制具有特定功能的全新蛋白质,为攻克疾病、开发新材料带来革命性希望。然而,这项强大技术的普及也如同打开了“潘多拉魔盒”,引发了深刻的生物安全隐忧:倘若有人意图合成有害的蛋白质,日益“聪明”的AI设计工具是否会成为其帮凶?
原创
博文更新于 2025.12.16 ·
281 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

超越简单问答:SUPERChem基准揭示大语言模型化学深度推理的机遇与挑战

近日,北京大学跨学科团队发布的化学大模型基准SUPERChem,如同一把精心锻造的“尺规”,不仅系统测量了当前顶尖模型的化学推理高度,更深刻揭示了其与人类专业认知之间尚存的沟壑,为AI赋能科学研究的下一阶段指明了方向。更深层次看,SUPERChem揭示了当前以大语言模型为代表的AI在迈向“科学智能”道路上必须跨越的鸿沟:如何将海量知识真正内化为可操控、可组合、可溯源的因果模型,而不仅仅是概率关联的集合。化学,以其严谨的底层逻辑与无限的现象组合,成为了检验这一目标的绝佳试金石。
原创
博文更新于 2025.12.11 ·
487 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

用最通用的语言模型,解决最专业的几何问题:Token-Mol的“反直觉”革命

然而,一项名为Token-Mol的研究却走上了一条“反直觉”的路径:它抛弃了复杂的几何架构,将分子的一切——二维结构、三维构象、乃至物理化学性质——全部“压扁”成一段离散的符号序列,然后交由一个类似ChatGPT的通用语言模型来处理。传统方法中,2D分子生成、3D构象预测、性质估算和基于靶点的优化是几个割裂的任务,通常需要不同的模型和架构。单一模型多任务:这意味着,同一个GPT式的模型骨干,既能像“翻译”一样根据蛋白口袋信息生成配体分子的“句子”(序列),也能像“完形填空”一样预测分子的性质或优化其构象。
原创
博文更新于 2025.12.09 ·
275 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

分子生成进入工程化时代:REINVENT 4 如何重塑药物设计实践

研究发现,REINVENT 4 能在保持类药性与合成可行性的前提下,系统性地提出药化学家未必能轻易想到的“跳跃性”新结构,显著扩大了探索的化学空间,与 MMPDB 的“系统化枚举”风格形成有力互补。然而,它清晰地指明了一个方向:未来AIDD的核心竞争力或许不在于更复杂的生成模型,而在于构建可靠、灵活、可解释的评估体系,并将生成工具无缝嵌入“设计-测试-分析”的迭代循环中。它提醒我们,当技术的光环褪去,唯有能够真正提升研发效率、产出经得起实验检验的候选分子的工具,才能在药物发现的漫长征途中留下坚实的足迹。
原创
博文更新于 2025.12.08 ·
307 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

人工智能驱动基因编辑:从预测工具到设计引擎的范式转变

其中,Lu团队的研究堪称典范。针对线粒体胞嘧啶碱基编辑器(DdCBE)编辑窗口过宽导致非靶向编辑的问题,他们利用生成式AI工具RFdiffusion,设计了一个全新的刚性“定向结构域”,用以精确固定DNA结合模块与脱氨酶催化模块的空间相对位置。基于结构的生成式AI(如RFdiffusion)和基于序列的蛋白质语言模型(如ESM3)共同构成了强大的设计工具箱,使研究人员能够突破天然蛋白质结构的限制,按需定制具有特定空间构象和功能特性的编辑工具。然而,生成式AI的兴起,将这一领域推向了更具创造性的新阶段。
原创
博文更新于 2025.12.05 ·
306 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

Gemini 3:谷歌的AI新巅峰,开启全模态智能时代

更引人注目的是,在被称为“人类最后考试”的HLE测试中,Gemini 3在不使用任何工具的情况下取得了45.8%的最高分,展现出接近人类博士级的复杂推理能力。在Vending-Bench 2测试中,Gemini 3展示了卓越的长程规划能力,通过模拟自动售货机业务运营,它能够在整个年度周期中保持一致的决策逻辑,实现显著更高的回报。通过全新发布的Google Antigravity智能体开发平台,Gemini 3能够代表用户执行复杂的端到端任务,从软件开发的规划、编码到验证,几乎无需人工干预。
原创
博文更新于 2025.12.04 ·
267 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

阿里“千问”入场:中国AI助手的破局与想象

强大的模型是应用创新的根基,而高频的应用场景又能持续反哺模型进化,形成闭环。过去,国内企业常被诟病“重应用、轻基础”,而如今,阿里等公司正以模型能力为支点,试图撬动AI生态的全局发展。然而,从底层实力到战略定位,从产品设计到应用场景,千问的入场,更像是一场资源充沛、目标明确的硬仗,其背后不仅承载着阿里的技术野心,更预示着国内AI应用生态可能迎来的新一轮洗牌。在模型与应用双轮驱动的时代,谁能够以更扎实的技术、更贴近需求的设计赢得用户,谁就有机会在这场全球智能浪潮中占据一席之地。而千问,正在尝试给出它的答案。
原创
博文更新于 2025.12.01 ·
310 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

AI「顿悟」牛顿定律:北大团队开启科学发现新范式

当人工智能不再只是数据的搬运工,而成为物理定律的“顿悟者”,科学发现的范式正在悄然重塑。尤为重要的是,系统完全不依赖质量、能量等先验概念,而是自主从数据中提取这些基础元素,实现了真正的“从零发现”。这场刚刚启幕的变革,终将带领我们抵达那些仅凭人类智慧难以触及的真理深处。AI-Newton的突破,本质是弥补了人类科学研究的固有短板:既保留了人类可解释、重逻辑的研究习惯,又克服了研究周期长、主观偏见等局限。当AI不仅能“算”数据,更能“悟”规律,科学家将得以从繁琐的试错中解放,聚焦于更富创造性的思考。
原创
博文更新于 2025.11.17 ·
493 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

智能体AI重塑药物发现:MolAgent引领分子性质预测新纪元

这种设计使得它能够作为核心组件,融入更复杂的自主药物发现工作流,与深度研究智能体、生成式分子设计智能体等协同作战,真正实现“假设生成–分子设计–性质预测”的闭环自动化。随着智能体协议的标准化与基础模型的持续进化,像MolAgent这样的专业化智能体将共同构成一个协同创新的网络,大幅压缩药物早期发现的时间与成本,加速治疗方法的创新。通过在社区数据集与真实药物研发任务上的验证,MolAgent已展现出与专家手工模型相媲美的性能,证明了智能体AI在复杂科学计算任务中的实用价值。
原创
博文更新于 2025.11.11 ·
391 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

AI赋能中医药:系统论框架引领传统医学现代化破局

提供了关键的方法论突破。在推演层面,AI驱动的计算组学与网络药理学,能系统推演活性成分群的作用机制,甚至能通过虚拟筛选为经典方剂发现新适应症,例如从中药库中快速锁定抗骨质疏松或抗新冠病毒的潜力化合物。随着AI与中医药的深度融合,我们有望真正揭开中药复方协同作用的奥秘,用现代科学语言阐释其整体治疗理念的智慧,从而加速中医药的现代化与国际化进程,让这份古老的文明瑰宝,在数字时代绽放出更加璀璨的光芒。”,利用图神经网络捕捉化学成分间的协同效应,直接预测其对中医证候的集体影响,突破了传统单成分、单靶点分析的局限;
原创
博文更新于 2025.11.10 ·
325 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

人工智能驱动的化学平台建设与设备开发:迈向高效与智能的化学研究新范式

人工智能与化学的深度融合,正引领一场研究范式的革命。通过构建智能平台与开发先进设备,化学研究将更高效、精准且具创新性。未来,随着数据整合与算法优化不断深入,AI有望在绿色化学、个性化医疗等领域发挥更大作用,最终推动化学工业迈向可持续发展的新纪元。
原创
博文更新于 2025.11.06 ·
346 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

告别高危重氮化学:中国团队解锁惰性芳香族C−N键直接转化新路径

国科大杭州高等研究院张夏衡团队与中科院上海有机化学研究所薛小松团队合作,在《自然》杂志发表了一项颠覆性研究,通过形成N-硝胺的直接脱胺策略,为惰性芳香族C−N键转化开辟了安全高效的新途径。研究人员发现,将普遍存在的芳胺转化为N-硝胺中间体后,原本惰性的C−N键能够被精准激活,进而实现与各类亲核试剂的反应。实验证明,该策略可成功构建碳-卤素(C−Br、C−Cl、C−I、C−F)、碳-杂原子(C−N、C−S、C−Se、C−O)及碳-碳键等十余种关键化学键,其官能团兼容性之广令人惊叹。
原创
博文更新于 2025.11.05 ·
353 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

数据驱动精准防控:FTA-BN融合模型为高校实验室火灾风险评估注入新动能

中国计量大学刘辉教授团队的这项研究,通过FTA与BN的有机融合,不仅为高校实验室火灾风险评估构建了一个新颖、强大的分析框架,更重要的是,它展示了如何将客观数据、逻辑模型与动态推理相结合,推动安全管理决策的科学化与精准化。该研究通过事故树分析(FTA)与贝叶斯网络(BN)的深度融合,构建了一种动态、系统的高校实验室火灾风险评估模型,不仅突破了传统方法的局限,也为实验室安全管理从“经验驱动”迈向“数据驱动”提供了关键技术支撑。基于模型输出的定量结果,研究团队提出了具有针对性的“两级防控”策略。
原创
博文更新于 2025.11.03 ·
473 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

人工智能重塑材料研发:从“试错”走向“精准创制”新范式

2024年诺贝尔化学奖与物理学奖双双花落AI领域,这一标志性事件不仅印证了AI技术的成熟,更宣告了其正以革新之势,重塑科学研究的固有范式,在化工材料研发领域催生着从传统“试错法”向“预测性设计”和“精准创制”的深刻变革。此外,相较于互联网、金融等行业,化工材料领域在薪酬待遇、研发环境等方面对顶尖AI人才的吸引力不足,人才流失压力较大,且现有人才培养体系与实践平台尚不完善,制约了技术应用的深度与广度。同时,积极探索迁移学习、元学习等小样本学习技术,并结合数据增强方法,提升模型在稀缺数据下的泛化能力。
原创
博文更新于 2025.10.30 ·
499 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

通用智能打破分子设计“模态孤岛”,ODesign让AI从理解生命走向创造生命

通过五大核心模块的协同驱动——从多层级分子表征、灵活可控的条件约束,到分子间相互作用的精准建模、三维结构的原子级生成,再到分子序列的智能推断——ODesign将不同形态的分子映射到统一的生成空间。它们精妙协作,构筑了生命的复杂秩序。当前人工智能虽已在单一分子设计上展现锋芒,如蛋白质或小分子设计模型各擅胜场,但它们仿佛只精通一门“方言”,彼此间存在难以逾越的“模态孤岛”。它如同一位精通所有生命分子“语言”的通用生物学家,实现了从“单点突破”到“通用智能”的关键跨越,让分子设计迈入了“大统一时代”。
原创
博文更新于 2025.10.28 ·
275 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

视觉语言:当文字在像素中重生

这种立体的、分层的记忆结构,打破了传统语言模型平面化处理信息的局限,创造出一个更加接近人类认知的信息处理系统。重要的得以凸显,次要的自然淡出——这不仅是技术的优化,更是对智能本质的深度模仿。当模型学会通过像素理解世界,我们或许正在见证一种新型智能的萌芽——它不再受限于线性的符号排列,而是在高维的视觉语言中,找到了通往更深刻理解的路径。这并非简单的技术迭代,而是一次对信息本质的深刻重构——当十万token的庞杂文字凝练为几百个视觉单元,我们目睹的不仅是技术的突破,更是认知范式的革命。
原创
博文更新于 2025.10.27 ·
240 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

AI突破“化学空间困境”:一场药物设计的范式革命

当算法开始为我们揭示那些隐藏在化学空间深处的奥秘时,人类对抗疾病的能力将迎来质的飞跃。三大学习策略各显神通:分布学习像一位严谨的学者,专注于在已知化学空间内进行骨架跃迁目标导向学习如同竞技运动员,通过强化学习不断优化得分,但需警惕“奖励黑客”风险条件生成则像是拥有多维思维的艺术家,在潜在空间中自由创作,最适合探索广阔化学空间AI模型家族的“团体作战”药物研发领域,创新与实用之间长期存在一个尖锐矛盾:最具潜力的候选药物往往集中在化学空间中极有限的“舒适区”内,而追求真正新颖的分子又常伴随极高的失败风险。
原创
博文更新于 2025.10.23 ·
466 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

人工智能设计抗生素:抗击耐药危机的曙光与挑战

de la Fuente团队的成果展示了这种技术的巨大潜力:其genAI模型设计了5万种具有抗菌特性的多肽,经筛选合成的46种顶级多肽中,约35种在培养皿中可有效杀灭菌株,且对人类细胞毒性较低。然而,在这振奋人心的进展背后,一个关键问题悬而未决:这些智能设计的药物,能否真正跨越从实验室到临床的重重障碍,成为抗击耐药危机的有力武器?更令人惊叹的是,基于与聊天机器人相同原理的生成式AI,不仅能识别已知化合物,还能创造全新的抗菌分子。然而,我们必须清醒认识到,AI设计的分子距离成为拯救生命的药物还有漫长路程。
原创
博文更新于 2025.10.21 ·
268 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

三步破局:一致性轨迹强化学习开启扩散语言模型“又快又好”推理新时代

然而,理想丰满,现实骨感。当EOSER解码策略与ASS调度器联手,再辅以CJ-GRPO算法进行在线强化学习,实现了“一石三鸟”的奇效:既大幅提升了推理速度,又削减了训练过程中的存储开销,最终使模型在极少的解码步数下,性能便能媲美传统方法需要多步数才能达到的水平。近日,由复旦大学、上海人工智能实验室、上海交通大学组成的联合研究团队发布了一项突破性研究,针对掩码扩散大语言模型提出了一套创新的“解码策略+强化学习训练”组合拳,不仅显著提升了模型的推理性能与效率,更為扩散大语言模型的发展开辟了一条全新的路径。
原创
博文更新于 2025.10.20 ·
3102 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏
加载更多