运维经纬(公众号)
码龄15年
求更新 关注
提问 私信
  • 博客:82,630
    82,630
    总访问量
  • 94
    原创
  • 497
    粉丝
  • 15
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2011-04-12

个人简介:深耕运维行业多年,擅长运维体系建设,方案落地。 【欢迎关注公众号《运维经纬》,也可直接加v: ywjw996】

博客简介:

专注深耕linux、容器云原生、运维自动化等方向

查看详细资料
个人成就
  • 获得1,171次点赞
  • 内容获得1次评论
  • 获得690次收藏
  • 代码片获得449次分享
  • 博客总排名30,819名
  • 原力等级
    原力等级
    4
    原力分
    797
    本月获得
    2
创作历程
  • 86篇
    2025年
  • 8篇
    2024年
成就勋章
TA的专栏
  • kubernetes
    3篇
  • python
    6篇
  • 中间件
    11篇
  • ansible
    14篇
  • kafka
    8篇
  • jenkins
    18篇
  • linux
    8篇
  • nginx
    11篇
  • 数据库
    8篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 开发工具
    ci/cdpycharmdockergitlab
  • 云原生
    dockerdevopskubernetesargocd
  • 运维
    运维容器jenkinsdevops自动化系统架构运维开发elkansibleprometheus
  • 服务器
    linux负载均衡
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

k8s下的发布策略详解

Kubernetes中三种常见的应用发布策略对比:金丝雀发布通过小范围测试(如25%流量)逐步验证新版本,适合核心系统升级;蓝绿发布维护两套环境实现瞬时切换,适合对中断敏感的关键业务;灰度发布可根据用户属性精准控制流量分配,适合用户体验敏感型应用。每种策略在K8s中都有对应的实现方式,如Deployment副本控制、Service选择器切换或Ingress注解配置,运维人员应根据业务场景选择合适方案。
原创
博文更新于 2025.09.12 ·
723 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

Django的session机制

本文介绍了Django中的Session机制及其实现原理。首先对比了Cookie和Session的区别:Cookie在客户端存储信息,而Session在服务端记录用户状态。Django默认使用Session机制,通过中间件SessionMiddleware生成session对象,支持数据库、缓存、文件和Cookie四种存储方式。文章详细说明了Session的常用操作语法,并重点分析了Session的过期时间设置,包括全局配置选项和过期清理机制。
原创
博文更新于 2025.09.11 ·
576 阅读 ·
18 点赞 ·
0 评论 ·
5 收藏

Django的基础概念与部署

Django是一个高效Python Web框架,遵循DRY原则,简化开发流程。其核心特点包括强大的ORM系统、自动管理后台、灵活URL路由、模板引擎和国际化支持。框架结构明确,包含URL路由(URLs.py)、视图(Views.py)、模型(Models.py)等模块。安装可通过pip或源码方式,创建项目后需配置数据库并运行开发服务器。Django适合快速构建安全、可维护的Web应用,使开发者能专注于业务逻辑而非底层实现。
原创
博文更新于 2025.09.11 ·
305 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

python-线程池实现

摘要:线程池技术通过复用线程资源减少频繁创建销毁的开销,提升服务器性能。Python提供两种实现方式:ThreadPoolExecutor(简化线程管理,适合批量任务)和threading+Queue(灵活控制,适合复杂任务分发)。前者自动分配任务,后者需手动管理队列和线程。建议根据场景选择:简单任务用ThreadPoolExecutor,复杂场景用threading.Queue或两者结合。(148字)
原创
博文更新于 2025.09.10 ·
811 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

python-threading.LOCK互斥锁

本文介绍了Python多线程编程中的线程安全问题及解决方法。当多个线程访问共享资源时会出现数据错乱,通过threading.Lock()互斥锁可以确保线程安全。文章展示了使用acquire()/release()方法和with语句两种加锁方式,并分析了死锁现象及其避免方法:按固定顺序获取锁、设置超时时间和减少锁持有范围。这些技术能有效保证多线程程序的正确性和可靠性。
原创
博文更新于 2025.09.10 ·
372 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

python-线程池

Python多线程编程主要使用threading模块,相比thread模块更安全可靠。threading提供线程创建、同步和通信等功能,包含Thread类、锁机制(Lock/RLock)、条件变量(Condition/Event)等核心组件。通过Thread(target,args)创建线程后需调用start()启动而非run()。示例展示了创建3个线程执行函数并同步等待完成的过程。threading确保子线程退出后主进程才结束,是Python实现多线程的标准方案。
原创
博文更新于 2025.09.09 ·
632 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

python-subprocess

Python的subprocess模块是执行外部命令的核心工具,提供进程创建、输入输出控制和返回码获取等功能。主要方法包括:subprocess.run()(Python3.5+推荐)用于简单场景,封装了常用功能;subprocess.Popen()则提供更灵活的底层控制,支持实时交互、管道通信等复杂操作。模块还提供异常处理、进程信号管理(terminate/kill)和多种封装函数(call/check_call/check_output)。使用时需注意shell参数的安全风险,以及管道通信可能导致的内存
原创
博文更新于 2025.09.09 ·
1087 阅读 ·
25 点赞 ·
0 评论 ·
21 收藏

容器-资源隔离机制

容器的隔离机制是实现 “轻量级虚拟化” 的核心,通过Linux 内核原生技术与容器运行时(如 docker、containerd)的封装,在共享宿主机内核的同时,为每个容器提供独立的资源、网络、文件系统等环境,避免容器间相互干扰。其本质是 “在同一内核中为进程组划定资源与权限边界”,而非像虚拟机那样完全隔离操作系统。
原创
博文更新于 2025.09.08 ·
1515 阅读 ·
36 点赞 ·
0 评论 ·
20 收藏

kubernetes-lxcfs解决资源可见性问题

本文介绍了Docker/Kubernetes环境中容器进程默认显示宿主机资源视图的问题及其解决方案。当容器内应用查看系统资源时(如free、top命令),会显示宿主机而非容器的资源配额,导致JVM等应用错误配置内存、监控失效等问题。通过部署lxcfs工具可解决该问题。
原创
博文更新于 2025.09.08 ·
572 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

etcd-基本工作原理及部署

摘要: etcd是一个基于Raft协议的分布式键值存储系统,具有高可用和强一致性特点,广泛应用于Kubernetes等服务编排系统。其架构包含HTTPServer、Store、Raft和WAL四个核心模块,通过内存存储和预写日志(WAL)实现高效数据管理,配合快照机制防止数据过大。Raft算法确保集群一致性,读写请求分别由任意节点和Leader节点处理。部署时需配置三个节点,设置独立数据目录和集群参数,并通过etcdctl验证运行状态。etcd凭借其可靠的数据存储和故障恢复能力,成为分布式系统的关键组件。
原创
博文更新于 2025.08.27 ·
1175 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

zookeeper-集群扩缩容

Zookeeper运维指南:扩容缩容与故障处理 本文介绍了Zookeeper集群运维的关键操作步骤:1)扩容3.5版本前集群需修改各节点配置并重启;2)缩容只需下线节点并更新配置;3)故障替换分主机名和IP两种处理方式;4)3.5版本后支持通过动态配置文件实现在线重配置,无需重启服务。文章还提供了新旧版本配置示例,帮助运维人员掌握集群扩缩容和故障处理技能。
原创
博文更新于 2025.08.27 ·
368 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

zookeeper-保姆级配置说明

摘要:ZooKeeper配置文件主要包含四类参数:1.基本配置(clientPort、dataDir、tickTime等);2.存储配置(preAllocSize、snapCount等);3.网络配置(maxClientCnxns、session超时等);4.集群配置(initLimit、server.x等)。其中tickTime是核心时间单位,影响心跳检测和超时判断;快照和日志配置影响性能与恢复;网络参数控制连接数和请求处理;集群配置则涉及选举、同步和节点角色。注意观察者节点、leader服务模式等特殊配
原创
博文更新于 2025.08.26 ·
476 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

zookeeper原理-leader选举及请求处理

本文深入解析ZooKeeper的核心机制:Leader选举和请求处理流程。ZooKeeper集群包含Leader、Follower和Observer三种角色,其中Leader负责事务定序。选举采用投票机制,节点比较ZXID和myid,获多数票者当选,集群节点数建议为奇数以避免脑裂。请求处理方面,只读操作本地执行,写操作由Leader转化为事务并分配ZXID,确保原子性和顺序性。ZXID在选举时用于同步节点状态,保障集群一致性。文章还详细介绍了新建集群和运行中的选举流程。
原创
博文更新于 2025.08.26 ·
662 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

zookeeper-znode解析

ZooKeeper采用类似文件系统的树形命名空间结构,每个节点(znode)存储数据并维护版本、时间等属性。znode分为四种类型:持久节点(永久存储)、临时节点(会话结束自动删除)及其有序版本(带自增序号)。关键特性包括:1)监视机制(watch)实现变更通知(单次触发需重复注册);2)数据原子性读写;3)版本控制(setData/delete操作需校验版本号)。每个变更会生成全局有序的zxid事务ID,节点状态记录创建/修改时间、子节点版本、数据长度等信息。这些特性使ZK适用于分布式协调服务场景。
原创
博文更新于 2025.08.26 ·
1105 阅读 ·
11 点赞 ·
0 评论 ·
21 收藏

zookeeper基础概念及部署

ZooKeeper是一个分布式协调服务,基于ZAB协议实现,具有高可用和强一致性特性。它采用树形数据模型,节点分为持久/临时、顺序/非顺序四种类型,支持版本控制和Watcher事件通知机制。集群由Leader、Follower和Observer角色组成,通过奇数节点确保选举一致性。部署时需配置动态节点文件,指定各节点ID和通信端口。ZooKeeper广泛应用于分布式系统,提供配置管理、命名服务、分布式锁等功能。
原创
博文更新于 2025.08.25 ·
420 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

Consul- acl机制!

本文探讨了Consul服务发现工具的ACL安全机制配置与验证。
原创
博文更新于 2025.08.19 ·
386 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

consul-基础概念

Consul是一个基于Golang开发的开源服务网格解决方案,主要提供五大核心功能:服务发现、健康检查、状态监控、键值存储和多数据中心支持。其架构采用分布式设计,每个节点运行Agent,分为Server和Client两种模式。Server负责数据持久化和集群状态维护,建议每个数据中心部署3-5个Server节点以确保高可用性;Client则负责监控服务和转发请求。Consul支持跨数据中心服务调用,不同数据中心的故障不会相互影响。通过Leader选举机制和节点容错设计,Consul实现了高可靠的服务治理能力
原创
博文更新于 2025.08.19 ·
251 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

redis-集成prometheus监控(k8s)

实现功能:如何在k8s中部署export并基于prometheus做es的指标采集,并绘制grafana dashboard看版
原创
博文更新于 2025.08.18 ·
454 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

elasticsearch-集成prometheus监控(k8s)

如何实现:在k8s中部署export并基于prometheus做es的指标采集。并绘制监控看版
原创
博文更新于 2025.08.18 ·
564 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

redis-保姆级配置详解

protected-mode yes #启用时,如果 Redis 没有绑定特定的 IP 地址(即通过 bind 参数指定),并且没有设置密码(通过 requirepass 参数设置),Redis 将只允许来自本地回环接口(127.0.0.1 和 ::1)的连接。maxmemory-policy noeviction #当 Redis 使用的内存达到或超过 maxmemory 限制时,Redis 会根据配置的内存淘汰策略来决定如何处理新的写入请求。从节点缓冲区超过 256MB 时立即断开。
原创
博文更新于 2025.08.15 ·
610 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏
加载更多