cloneme01
码龄19年
求更新 关注
提问 私信
  • 博客:896,949
    问答:21
    动态:326
    897,296
    总访问量
  • 248
    原创
  • 20,858
    粉丝
  • 92
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
加入CSDN时间: 2007-04-04

个人简介:TALK IS CHEAP, SHOW ME THE CODE.

博客简介:

记录并分享

博客描述:
以实战为主,记录并分享工作中遇到的问题,推荐一些好的实战项目
查看详细资料
个人成就
  • 获得983次点赞
  • 内容获得155次评论
  • 获得2,331次收藏
  • 代码片获得7,465次分享
  • 博客总排名230,372名
  • 原力等级
    原力等级
    7
    原力分
    4,791
    本月获得
    12
创作历程
  • 1篇
    2025年
  • 34篇
    2024年
  • 58篇
    2023年
  • 139篇
    2022年
  • 16篇
    2021年
成就勋章
TA的专栏
  • 大语言模型
  • 其他技术博文
    12篇
  • VUE相关
  • 小程序相关
  • NLP相关
    1篇
  • 大数据相关
    32篇
  • NGINX相关
    9篇
  • SpringCloud
    6篇
  • ATLAS相关
    14篇
  • 平台/系统架构
    29篇
  • LINUX相关
    5篇
  • 设计模式相关
    8篇
  • GIT操作相关
    7篇
  • DOCKER相关
    1篇
  • SpringBoot
    108篇
  • MAVEN相关
    22篇
  • JAVA基础知识
    37篇
  • DROOLS引擎
    4篇
  • DORIS相关
    25篇
  • DolphinScheduler

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 67

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

33人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

如何查看各个语言的热度排名?

如何查看各个语言的热度排名
原创
博文更新于 2025.02.22 ·
478 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

一文读懂数据元、元数据、数据项、数据集的区别

一文读懂数据元、元数据、数据项、数据集的区别。
原创
博文更新于 2024.11.24 ·
2927 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

一文读懂数据库、数据仓库、数据平台、数据中台、数据湖、湖仓一体的使用场景和区别

一文读懂数据库、数据仓库、数据平台、数据中台、数据湖、湖仓一体的使用场景和区别
原创
博文更新于 2024.11.24 ·
1817 阅读 ·
40 点赞 ·
0 评论 ·
7 收藏

什么是实体表,维度表,事实表,物理表、逻辑表?

什么是实体表,维度表,事实表,物理表、逻辑表。
原创
博文更新于 2024.09.20 ·
1790 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

即席查询和OLAP的区别是什么?

即席查询是指那些用户在使用系统时,根据自己当时的需求临时定义的查询。是一种在数据仓库中,根据用户需求即时构建并执行查询的方式。
原创
博文更新于 2024.09.19 ·
614 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

DORIS - DORIS注意事项(二)

Doris 数据表模型上目前分为三类:DUPLICATE KEY, UNIQUE KEY和AGGREGATE KEY。
原创
博文更新于 2024.09.19 ·
975 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

什么是Bitmap?

所谓的Bitmap就是用一个bit位来标记某个元素对应的VALUE,而KEY即是该元素。由于采用了Bit为单位来存储数据,因此可以大大节省存储空间。
原创
博文更新于 2024.09.18 ·
1265 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

DORIS - DORIS之BloomFilter索引

Bloom Filter(布隆过滤器)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否可能属于这个集合,是由 Bloom 在 1970 年提出的一种多哈希函数映射的快速查找算法。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难,初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。
原创
博文更新于 2024.09.18 ·
1403 阅读 ·
25 点赞 ·
0 评论 ·
13 收藏

DORIS - DORIS之倒排索引

倒排索引(Inverted index),也常被称为反向索引、置入档案或反向档案,是一种索引方法,用于存储在全文搜索场景下某个单词在一个文档或者一组文档中的存储位置的映射,它是文档检索系统中最常用的数据结构。通过倒排索引,可以根据单词快速获取包含这个单词的文档列表,倒排索引主要由“单词词典”和“倒排文件”两部分组成。
原创
博文更新于 2024.09.14 ·
1222 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

DORIS - DORIS之索引简介

(1)最频繁使用的过滤条件指定为 Key字段,自动建前缀索引,它的过滤效果最好,但是一个表只能有一个前缀索引,因此要用在最频繁的过滤条件上,前缀索引比较小,所以可以全量在内存中缓存。建表时会自动取表的 Key 的前 36 字节作为前缀索引。(2)对非 Key 字段如有过滤加速需求,首选建倒排索引,因为它的适用面广,可以多条件组合,次选下面两种索引:A. 有字符串 LIKE 匹配需求,再加一个 NGram BloomFilter 索引。
原创
博文更新于 2024.09.14 ·
768 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

DORIS - DORIS的分区分桶

在存储引擎方面,Apache Doris 采用列式存储,按列进行数据的编码压缩和读取,能够实现极高的压缩比,同时减少大量非相关数据的扫描,从而更加有效利用 IO 和 CPU 资源。
原创
博文更新于 2024.09.13 ·
3195 阅读 ·
23 点赞 ·
0 评论 ·
33 收藏

SpringCloud - 服务网关(一)

Spring Cloud Gateway作为Spring Cloud生态中的网关,不仅提供统一的路由能力,并且还提供了基于FILTER链方式的网关基本的功能。
原创
博文更新于 2024.09.13 ·
920 阅读 ·
8 点赞 ·
0 评论 ·
23 收藏

大数据 - HIVE3.1.0元数据服务(二)

元数据服务也就是HiveMetastore服务,客户端先连接HiveMetastore服务,HiveMetastore服务再去连接元数据存储的数据库,从而获取相关元数据信息。Derby模式下值为org.apache.derby.jdbc.EmbeddedDriver, MySQL为com.mysql.jdbc.Driver;HIVE将元数据存储在关系数据库中(MySql、Derby),元数据包括数据库信息及表的信息如:表的属性、表的名称、表的列、分区及其属性等。比如使用Derby时的值可以为。
原创
博文更新于 2024.09.12 ·
758 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

大数据 - OLAP与OLTP的区别

联机事务处理OLTP(on-line transaction processing)和 联机分析处理OLAP(On-Line Analytical Processing)。
原创
博文更新于 2024.09.12 ·
561 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

缓存雪崩、缓存击穿、缓存穿透

缓存雪崩、缓存击穿、缓存穿透。
原创
博文更新于 2024.09.12 ·
1003 阅读 ·
30 点赞 ·
0 评论 ·
2 收藏

APACHE-ATLAS-2.1.0 - 基础运维

(一)SOLR相关1. 如何创建/删除集合?# 1. 删除solr/bin/solr delete -c vertex_indexsolr/bin/solr delete -c edge_indexsolr/bin/solr delete -c fulltext_index# 2. 创建solr/bin/solr create -c vertex_index -force -d conf/solr/solr/bin/solr create -c edge_index -force -d c
原创
博文更新于 2024.09.10 ·
862 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

APACHE-ATLAS-2.1.0 - 安装MetaStoreEventListener用于实时接收HIVE元数据的变化

安装MetaStoreEventListener用于实时接收HIVE元数据的变化。
原创
博文更新于 2024.09.10 ·
514 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

DORIS - DORIS查询优化之行列混存

什么是点查询?一句话:点查询,就是指根据KEY从数据库中取出一行或几行数据的过程。所谓的「点查询」,指的是在查询数据库表时,通过等值的条件筛选(WHERE 字段名=字段值),一般通过走索引的方式,以非常快的速度,获取到目标结果的查询方式。如果你查询的条件走了索引,且符合条件的目标数据量很小的话,那么这个查询效率就会非常高。
原创
博文更新于 2024.09.09 ·
1258 阅读 ·
12 点赞 ·
0 评论 ·
3 收藏

DORIS - DORIS的BDBJE简介

Berkeley DB(BDB)是一个开源的数据库,它提供的是一系列直接访问数据库的函数,而不是像关系数据库那样需要网络通讯、SQL解析等步骤。Berkeley DB是一个高性能的,嵌入式的数据库编程库,“嵌 入”是指它内嵌在程序中,而不是说他只应用在嵌入式系统上,它适合于管理海量的,简单的数据。
原创
博文更新于 2024.09.09 ·
1064 阅读 ·
9 点赞 ·
0 评论 ·
5 收藏

HyperLogLog简介

HyperLogLog,是一种概率数据结构,简介HLL,算法来源于伯努利实验。
原创
博文更新于 2024.09.07 ·
1226 阅读 ·
28 点赞 ·
0 评论 ·
27 收藏
加载更多