OpenCV:Depth和Type傻傻分不清楚

本文详细解析了OpenCV中图像类型的定义与区别,包括Depth与Type的概念,以及CV_8U和CV_8UC1的具体含义,帮助初学者正确理解和应用。

刚开始使用OpenCV时,经常会胡乱使用CV_8UCV_8UC1,这两种宏经常傻傻分不清楚。下面我们就来理一理它们之间的关系和区别。

Depth

官方文档对Depth的解释是单独一个通道的类型,通俗的说就是图像中单独一个元素的类型,它可以有以下的类型:

#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7

Type

Type其实也很好理解,它实际上是将Depth和通道个数混合在一起的一个类型,所以它的种类比较多:

#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))

#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))

#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))

#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))

#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))

#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))

#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))

参考资料

<think>嗯,用户现在遇到了一个OpenCV的断言错误,具体信息是“Assertion failed ((depth == CV_8U || depth == CV_32F) && type == _templ.type() && _img.dims() <= 2) in cv::matchTemplate”。我需要帮用户分析这个问题。首先,用户可能不太清楚这个错误的具体原因,所以我要拆解断言失败的条件,看看每个部分可能的问题。 首先,断言的条件有三个部分:深度必须是CV_8U或CV_32F,模板原图的类型必须一致,以及图像的维度不超过2。用户可能在调用matchTemplate函数时,输入的图像或模板不符合这些条件。 接下来,我需要考虑用户可能遇到的具体情况。例如,用户可能加载了不同位深的图像,比如16位的,而OpenCV的matchTemplate不支持。或者,模板原图的通道数不同,比如一个是灰度图(单通道),另一个是彩色图(三通道)。还有可能用户错误地处理了图像,导致图像维度超过2,比如使用了3D矩阵。 然后,我应该给出排查步骤,帮助用户逐一验证这些条件。例如,检查图像是否成功加载,使用img.depth()img.type()来确认位深类型,确保两者一致,并且维度正确。同时,可能需要用户调整图像类型,比如将模板原图都转为CV_8U或CV_32F,并统一通道数。 用户可能不太清楚如何转换图像类型,所以需要给出具体的代码示例,比如用convertTo函数改变位深,或用cvtColor调整通道数。此外,用户可能没有意识到图像加载时的参数会影响类型,比如用IMREAD_GRAYSCALE加载的图是单通道,而默认是BGR三通道。 还要提醒用户检查图像是否为空,避免因为路径错误导致图像未加载。另外,如果用户在处理过程中修改了图像,可能无意中改变了位深或通道数,需要确保每一步操作后的数据类型符合要求。 最后,可能需要给出一个完整的示例代码,展示正确的处理流程,帮助用户对照自己的代码进行调整。同时,提醒用户查阅OpenCV文档,确认函数的参数要求,避免类似错误再次发生。</think>--- ### **错误解析** 此断言错误直接指向 `cv::matchTemplate()` 函数的参数不合法,核心问题如下: 1. **位深不匹配** - **错误条件**: `(depth == CV_8U || depth == CV_32F)` - **含义**: 输入图像 (`_img`) 模板图像 (`_templ`) 的位深必须为 `CV_8U`(8 位无符号整型)或 `CV_32F`(32 位浮点型)。 - **常见场景**: 图像被错误转换为 `CV_16U`、`CV_64F` 等其他类型。 2. **数据类型不一致** - **错误条件**: `type == _templ.type()` - **含义**: 输入图像模板图像的**数据类型(通道数+位深)必须完全一致**。例如: - 均为单通道 `CV_8UC1` - 均为三通道 `CV_32FC3` 3. **维度超限** - **错误条件**: `_img.dims() <= 2` - **含义**: 输入图像必须是二维矩阵(常规的二维图像),不支持三维及以上数据。 --- ### **排查与修复步骤** #### **1. 检查输入图像模板的位深** ```cpp cv::Mat img = cv::imread("input.jpg"); // 输入图像 cv::Mat templ = cv::imread("template.jpg"); // 模板图像 // 输出位深类型 std::cout << "img 位深: " << img.depth() << ", 类型: " << img.type() << std::endl; std::cout << "templ 位深: " << templ.depth() << ", 类型: " << templ.type() << std::endl; ``` - **合法位深**: - `CV_8U`(对应 `img.depth() == 0`) - `CV_32F`(对应 `img.depth() == 5`) - **修复方法**: 若位深不合法,使用 `convertTo()` 转换类型: ```cpp // 转换为 CV_8U(例如从 CV_16U 转换) img.convertTo(img, CV_8U); templ.convertTo(templ, CV_8U); // 或转换为 CV_32F(例如用于浮点计算) img.convertTo(img, CV_32F); templ.convertTo(templ, CV_32F); ``` --- #### **2. 确保输入图像模板的通道数一致** ```cpp // 示例:若 img 是三通道,templ 是单通道,需统一通道数 if (img.channels() != templ.channels()) { // 将模板转换为与输入图像相同的通道数 if (img.channels() == 3) { cv::cvtColor(templ, templ, cv::COLOR_GRAY2BGR); // 单通道 -> 三通道 } else if (img.channels() == 1) { cv::cvtColor(img, img, cv::COLOR_BGR2GRAY); // 三通道 -> 单通道 } } ``` --- #### **3. 验证图像维度合法性** - **错误场景**:输入图像或模板是多维矩阵(如三维数组)。 - **解决方法**:确保数据是二维的。例如从视频或传感器读取数据时,需截取二维切片。 --- ### **完整修复示例** ```cpp #include <opencv2/opencv.hpp> int main() { // 加载图像(确保路径正确) cv::Mat img = cv::imread("input.jpg", cv::IMREAD_COLOR); // 三通道 CV_8UC3 cv::Mat templ = cv::imread("template.jpg", cv::IMREAD_GRAYSCALE); // 单通道 CV_8UC1 if (img.empty() || templ.empty()) { std::cerr << "图像加载失败!" << std::endl; return -1; } // 统一通道数(将模板转换为单通道,输入图像也转为单通道) cv::cvtColor(img, img, cv::COLOR_BGR2GRAY); // 输入转为灰度 // templ 已是灰度,无需转换 // 确保位深为 CV_8U 或 CV_32F(此处选择 CV_8U) if (img.depth() != CV_8U) img.convertTo(img, CV_8U); if (templ.depth() != CV_8U) templ.convertTo(templ, CV_8U); // 执行模板匹配 cv::Mat result; cv::matchTemplate(img, templ, result, cv::TM_CCOEFF_NORMED); // 后续处理... return 0; } ``` --- ### **常见错误场景** | **场景** | **错误原因** | **修复方法** | |--|---------------------------|-------------------------------------| | 输入图像为 `CV_16UC1` | 位深不合法 (`depth != 0`) | `img.convertTo(img, CV_8U)` | | 模板是灰度图,输入是彩色图 | 通道数不一致 | 统一为单通道或三通道 | | 图像数据来自深度学习模型输出 | 可能包含浮点型非 `CV_32F` | 显式转换为 `CV_32F` | | 使用 `cv::Mat::reshape()` 修改通道数 | 未同步调整数据类型 | 通过 `cvtColor` 或 `convertTo` 调整 | --- ### **总结** - **核心原则**:输入图像模板必须满足 `位深`、`通道数`、`维度`三者的合法性。 - **调试关键**:在调用 `matchTemplate` 前,始终验证以下属性: ```cpp assert(img.depth() == CV_8U || img.depth() == CV_32F); assert(templ.type() == img.type()); assert(img.dims == 2 && templ.dims == 2); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值