格图素书
码龄3年
求更新 关注
提问 私信
  • 博客:1,122,897
    1,122,897
    总访问量
  • 1,702
    原创
  • 1,282
    排名
  • 6,283
    粉丝
  • 77
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2022-07-24

个人简介:绰约多逸态,轻盈不自持。常矜绝代色,复恃倾城姿。

博客简介:

getusushu的博客

查看详细资料
个人成就
  • 获得6,101次点赞
  • 内容获得69次评论
  • 获得6,131次收藏
  • 代码片获得1,831次分享
  • 原力等级
    原力等级
    9
    原力分
    12,336
    本月获得
    144
创作历程
  • 267篇
    2025年
  • 364篇
    2024年
  • 938篇
    2023年
  • 134篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 数学建模算法案例精讲500篇
    付费
    14篇
  • 大数据竞赛赛题解析
    付费
    615篇
  • 可视化高级绘图技巧100篇
    付费
    69篇
  • 目标检测YOLO系列从入门到精通技术详解100篇
    付费
    94篇
  • AUTOSAR汽车电子嵌入式编程精讲300篇
    付费
    378篇
  • 点云从入门到精通技术详解100篇
    付费
    336篇
  • 大数据在电力行业的应用案例
    付费
    31篇
  • 挑战杯大学生创业企划
    付费
    4篇
  • 【python实战应用】从原理到实战案例精讲100篇
    付费
    127篇
  • 数学建模学习指导
    付费
    20篇
  • SCI写作学习指导
    1篇
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 收藏
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 收藏

  • 社区

搜索 取消

数学建模算法案例精讲500篇-【数学建模】非凸损失函数优化

非凸优化问题是指目标函数或约束条件中存在至少一个非凸(即“非向下弯曲”)成分的优化问题。与凸优化问题不同,非凸优化问题的解空间可能存在多个局部最优解,且这些局部最优解未必是全局最优解,因此求解难度显著增加。1. 非凸优化的核心特征非凸目标函数:函数图像存在“凹陷”或复杂弯曲(如多个波峰波谷)。例如:f(x)=sin⁡(x)+x^2(既有凸部分又有非凸振荡)。非凸约束集:可行域的形状复杂,如非凸多边形或离散点集。例如:约束条件 x∈{0,1}(整数规划问题)。2. 与凸优化的关键区别。
原创
博文更新于 14 小时前 ·
3 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

“华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰(续)(附MATLAB代码实现)

参考文献4.3 模型二的建立与求解相较于问题一模型,问题二中不再规定无人机的航向、航速、飞行高度以及匀速直线运动的运动状态。在需要同样地完成附件 1 中 20 个时刻的虚假目标位置坐标点过程中,每一架无人机的速度、航向可以改变,这也使更少数量的无人机即可完成附件一中虚假航线。但题目对于无人机运动状态做出了尽可能少做转弯、爬升、俯冲等机动动作,转弯半径不能过小等要求。在完成规定虚假航线的前提下,由于每一架无人机同一时刻可产生多个假目标信息,所以还可以产生多条虚假航迹。
原创
博文更新于 前天 00:30 ·
12 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

“华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰

首先建立单机干扰单部雷达的模型,如图 4.1 所示,描述了单机干扰单部雷达时。状态,然后在第二题的基础上,以最大化虚假航迹数目为优化目标,以飞行高度、行航迹进行优化,探求理想化飞行轨迹及与实际轨迹的差别,完善飞行轨迹模型。化算法,建立了求解无人机航迹和虚假航迹的非线性规划模型,并基于仿真计算。与编程优化,得到了满足目标航迹点的无人机飞行轨迹和附加产生的虚假航迹。人机的飞行速度,将问题简化为一架无人机至多干扰一部雷达的模型。的限制,移动剩下自由的无人机,通过搜索算法来找到可能的虚假航迹点,由此。
原创
博文更新于 2025.12.17 ·
16 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)

模仿学习(Imitation Learning)也被称为基于演示的学习(Learning By Demonstration)或者学徒学习(Apprenticeship Learning)。机器是可以与环境进行交互的,但是大部分情况下,机器却不能从这个过程中显示的获得奖励(例外是类似于马里奥之类的游戏,显然获得的分数就是奖励)。
原创
博文更新于 2025.12.14 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)(二)

模仿学习有人又称为学徒制学习,示范学习,但又有人觉得只有逆向强化学习才能称为学徒制学习。示范学习就是人类示范给机器,让机器去模仿学习。不同于加强学习,在模仿学习中,机器可以与环境互动,但并不会得到Reward,因此模仿学习并非受到Reward影响,主要还是受到专家展示启发。Reward不好定义如果手工制作的奖励可能会造成无法控制的行为,考试要100分是目标,那机器可能学到的是作弊就能100分。行为克隆Behavior Cloning。
原创
博文更新于 2025.12.13 ·
15 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-【自动驾驶】数据标注(二)

自动驾驶数据标注中人员培训与管理是保证标注质量的根基。标注人员需要理解自动驾驶感知的基本原理,才能准确区分不同交通要素。此外还要熟练掌握标注工具的各项功能。定期组织培训与考核,形成知识库与常见问题解答,并通过标注示例和对比案例帮助标注员理解规范细节。在标注流程中,质量控制尤为关键。可在标注的不同阶段设置多级审校机制,初级标注完成后进行自检,中级审核员复查,再由高级专家进行抽样验证;对于发现的问题,要及时反馈给标注员并迅速修正。
原创
博文更新于 2025.12.11 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-【自动驾驶】数据标注

自动驾驶数据标注是指在自动驾驶系统所采集的感知数据(如摄像头图像、激光雷达点云、毫米波雷达等)中,为各种交通要素(车辆、行人、交通标志、车道线等)手动或半自动地添加类别标签和空间标记(如边界框、多边形轮廓、实例ID、时序关联等)的过程。通过准确、规范的标注,机器学习模型才能够从海量原始数据中学习到目标的特征与行为模式,实现对真实道路环境的感知、理解与预测。高质量的标注不仅是训练和评估算法性能的基础,也直接关系到自动驾驶系统的安全性和可靠性。自动驾驶数据标注就像给汽车“贴标签”和“画地图”。
原创
博文更新于 2025.12.10 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

点云从入门到精通技术详解100篇-基于三维点云的机器人抓取位姿检测(续)

集到的深度信息会存在噪点,因此需要将生成的场景点云进行预处理,获得平滑、降采样处理场景点云,本文设计的预处理操作更能从冗杂的场景点云中提取清晰、平滑的目标点云,便于后续的抓取位姿采样,提高后续算法的处理效率。因此需要对场景点云进行适当的分割,仅保留目标物体的点云,整个过程可以通过。场较小时,空间中的点云密度会更加提高;觉子系统的效率,再保持全局点云几何形状不改变的前提下,通过对目标点云进行。体素降采样可以快速地减少点云数据并同时保持点云的形。个点,由于我们实施抓取的目标物体只占整个场景点云图的一部分,
原创
博文更新于 2025.12.09 ·
661 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

点云从入门到精通技术详解100篇-基于三维点云的机器人抓取位姿检测

AUBO-i5 机器人能充分满足本系统中抓取执行的需求,所选机器人的主要技术参数如表 2.2 所示。体数据,而是直接处理抓取器内部的点云,使用 PointNet 进行抓取位姿检测。根据前文的分析,以三维点云为抓取系统中视觉感知环节的输入数据,越来越多的研究提出用抓取位姿检测的方法来解决抓取规划的问题,此方法需要训。实验平台,实现三维空间内的抓取操作,本课题具有较强的研究意义和应用价值。规划最优的抓取路径,并执行对最优位姿的抓取。基于经验的抓取检测方法是根据特定场景中抓取对象的几何形状,实现对。
原创
博文更新于 2025.12.09 ·
1234 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

AUTOSAR从入门到精通-汽车ECU标定

即使同一生产线的发动机,零部件(如喷油器、节气门)的加工精度也存在细微差异,导致相同控制信号下的实际输出不同。同时,不同市场用户对驾驶体验的偏好不同(如欧洲用户偏好动力响应,东南亚用户偏好经济性),可通过标定调整动力输出特性实现差异化适配。内部控制参数(如喷油脉宽、点火提前角、节气门开度等),使被控系统(如发动机)在全工况范围内达到性能最优的过程。(像狙击手既要打十环,还要保证连续射击的稳定性)。标定也得在台架、实车上迭代:从怠速到全负荷,模拟高温、高原等环境,把喷油、点火、增压这些参数磨到精准,既要。
原创
博文更新于 2025.12.08 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】Floyd路径算法

Floyd算法(弗洛伊德算法)是一种用于求解给定加权图中所有顶点对之间最短路径的经典动态规划算法,由罗伯特·弗洛伊德(Robert Floyd)于1962年提出。‌与Dijkstra算法仅能求解单源最短路径(从一个顶点出发到其他顶点的最短距离)不同,Floyd算法可解决多源最短路径问题(任意两点间的最短距离)。
原创
博文更新于 2025.12.07 ·
19 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】Floyd路径算法(二)

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则Gij=d,d表示该路的长度;否则Gij=无穷大。
原创
博文更新于 2025.12.06 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-汽车ECU标定(三)

ETAS公司的INCA作为传统标定工具的代表,提供了强大的功能和丰富的插件支持,特别适合大型整车企业的复杂标定需求。这些工具通常支持项目化管理,能够保存标定工程的完整状态,包括参数设置、测量配置和实验数据,便于后续的数据分析和追溯。XCP协议包含了3个部分,主要分为XCP驱动层(XCP是如何进行数据传输的)、A2L文件(用于定义通讯所需信息)的格式描述和自动化标定的工具的介绍。通过标定系统,我们可以轻松地读取ECU中的标定变量数据,并在标定平台上进行编辑和修改,将控制算法转化为C语言或其他编程语言的代码。
原创
博文更新于 2025.12.05 ·
41 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-汽车ECU标定(二)

明确标定覆盖的怠速工况,包括“冷机怠速(水温20℃)、热机怠速(水温85℃)、负载怠速(开启空调/大灯)”三类典型场景,针对每类场景设定转速目标(冷机850rpm、热机750rpm、负载900rpm)与油耗上限。
原创
博文更新于 2025.12.04 ·
22 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-Fee算法与Block类型

FEE算法是AutoSAR中用于Flash EEPROM仿真的核心机制,通过Block(数据块)管理实现非易失性数据的可靠存储。
原创
博文更新于 2025.12.02 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)(二)

孤立森林 iForest(Isolation Forest)是一种无监督的异常检测算法,能处理大规模的多维数据。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤(异常样本更容易快速落入叶子结点,或者说异常样本在DT上,距离根节点更近)。两个假设:1. 异常样本占比很小(如果占比太高,可能被识别为正常的);2. 异常样本与正常样本差异较大(主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)。
原创
博文更新于 2025.12.01 ·
22 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)

工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记的脏数据,而数据的质量决定了最终模型性能的好坏。如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题。异常检测分为离群点检测(outlier detection)以及奇异值检测(novelty detection)两种.离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况。
原创
博文更新于 2025.11.29 ·
28 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUTOSAR从入门到精通-Fee算法与Block类型(二)

Fee组件实现FLASH的模拟EEPROM功能,即更合理的分配FLASH的资源,通过软件算法更大限度的利用FLASH延长使用寿命。Fee组件位于Memory Hardware Abstraction层里,为上层MemIf提供接口,下层是Fls组件。Fee是Fls组件的抽象层,实现FLASH的模拟EEPROM功能,用户调用读写等接口后,在Fee_MainFunction()执行模拟EEPROM策略后计算要写的地址、数据,再调用Fls里的接口实现读写擦。
原创
博文更新于 2025.11.28 ·
38 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】符号回归算法(gplearn)(附python代码实现)

符号回归(Symbolic Regression)是一种有监督的机器学习方法,用于发现某种隐藏的数学表达式或函数,以最佳地拟合给定的数据集。与传统的回归方法不同,符号回归不仅仅是找到一个数学模型的参数,而是通过搜索和组合基本数学运算符和函数,自动构建出一个数学表达式。同时,符号回归也是为数不多的可解释机器学习方法。相比于线性回归的只能表示线性关系,符号回归能够输出更加复杂的非线性关系(+、-、*、/、sin、cos、exp等)。
原创
博文更新于 2025.11.26 ·
34 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数学建模算法案例精讲500篇-【数学建模】交替方向法(ADMM)(二)(附MATLAB和python代码实现)

ADMM算法是一种用于解决具有可分离结构的凸优化问题的分布式算法。它将原始问题分解为多个子问题,每个子问题在各自的节点上独立求解,并通过迭代更新变量和拉格朗日乘子来实现全局优化。ADMM算法具有形式简单、收敛性好、鲁棒性强等优点,且不要求子优化目标函数严格凸和有限。ADMM算法的基本原理在于将复杂的全局优化问题分解为更易处理的局部优化问题,然后通过协调步骤使它们协同工作以达到全局最优。主问题优化:关注全局变量。辅问题优化:关注局部分解变量。乘子更新:通过拉格朗日乘子来协调两者的差异。
原创
博文更新于 2025.11.24 ·
32 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多