叶庭云
码龄6年
求更新 关注
提问 私信
  • 博客:2,866,003
    社区:3,607
    问答:2,135
    动态:64
    视频:12,821
    2,884,630
    总访问量
  • 528
    原创
  • 846
    排名
  • 154,637
    粉丝
  • 535
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
加入CSDN时间: 2019-11-13

个人简介:做的所有努力都是为了降低不确定性,提升概率。

博客简介:

叶庭云 成为自己的光

博客描述:
心流 · 情绪稳定 · 坚持 · 干净 · 乐观 · 谦逊
查看详细资料
个人成就
  • 优质创作者: python技术领域
  • 领域专家: 数据科学与机器学习技术领域
  • 获得11,876次点赞
  • 内容获得2,787次评论
  • 获得24,529次收藏
  • 代码片获得36,454次分享
  • 原力等级
    原力等级
    9
    原力分
    13,515
    本月获得
    25
创作历程
  • 18篇
    2025年
  • 147篇
    2024年
  • 82篇
    2023年
  • 115篇
    2022年
  • 108篇
    2021年
  • 62篇
    2020年
成就勋章
TA的专栏
  • 人工智能学习之路
    付费
    76篇
  • 数学建模/大数据分析与可视化
    付费
    101篇
  • Python爬虫实战
    付费
    20篇
  • 通信工程专业基础课
    付费
    18篇
  • 技术杂谈+
    付费
    27篇
  • 暂时
    47篇
  • 心流
    116篇
  • ChatGPT 实践
    39篇
  • Github有趣的项目
    3篇
  • 装库、报错、异常解决等
    64篇
  • 修炼机器学习
    1篇
  • Python OpenCv图像处理
    13篇
  • 深度学习笔记
    5篇
  • 数据结构与算法
    5篇

TA关注的专栏 7

TA关注的收藏夹 0

TA关注的社区 36

TA参与的活动 14

兴趣领域 设置
  • 大数据
    大数据
  • 人工智能
    数据挖掘机器学习
  • 区块链
    智能合约
  • 学习和成长
    程序人生
所有的努力是为了降低不确定性和提升概率

微信搜一搜:AI庭云君。分享Python爬虫、数据分析、数据可视化、机器学习有关知识和实例;也分享实用的资料教程、软件工具、学习文档和简历模板。发现求知的乐趣,在不断总结和学习中进步。坚持输出优质文章,期待你的关注,一起交流学习,互相成就。

20210128162853963.jpg
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

虚拟化向左,超节点向右,一文了解实现 GPU/NPU 利用率提升达 30% 的 “黑科技”

超节点、虚拟化、Aegaeon。虚拟化向左,超节点向右,一文了解实现 GPU/NPU 利用率提升达 30% 的 “黑科技”。
原创
博文更新于 2025.11.30 ·
911 阅读 ·
29 点赞 ·
3 评论 ·
10 收藏

如何让大模型跑得更快、更便宜?值得研读的高效推理综述论文/技术文章与工程实践资源汇总,全面涵盖 LLM、VLM、VLA、长上下文情景的高效推理

大语言模型的浪潮已从 "能生成" 进入 "如何高效生成" 的深水区。推理效率不再只是大模型落地的附属议题,而是贯穿算法、系统乃至硬件全栈的关键战场。从 vLLM 的分页注意力,到自适应推测解码、Prefilling/Decoding 分离架构、大规模专家并行、KV 缓存压缩与跨节点传输,每一项创新都在重塑算力利用的极限。这篇博文汇总了一些最具代表性的大模型高效推理综述论文和博客,为想入行 LLM Inference Infra 的读者搭起一座理论与实践并行的桥梁。
原创
博文更新于 2025.11.19 ·
784 阅读 ·
32 点赞 ·
3 评论 ·
32 收藏

一文了解大语言模型推理性能优化关键技术之 PD 分离及典型的 PD 分离方案

本文首先明确大语言模型推理系统的关键性能指标,继而剖析预填充(Prefilling)与解码(Decoding)这两个阶段的核心特征。基于上述分析,本文指出:持续批处理(Continuous Batching)采用阶段隔离与抢占机制,虽有助于提高系统吞吐量并降低首令牌延迟(Time To First Token,TTFT),但会显著增加词元间延迟(Token-to-Token Delay,TBT),进而对端到端(End-to-End,E2E)延迟造成不利影响。最后,本文简要回顾了预填充与解码相分离(Prefi
原创
博文更新于 2025.11.09 ·
2403 阅读 ·
36 点赞 ·
2 评论 ·
14 收藏

一文了解开源大语言模型文件结构,以 Hugging Face DeepSeek-V3.1 模型仓库为例

一文了解开源大语言模型文件结构,以 Hugging Face DeepSeek-V3.1 模型仓库为例
原创
博文更新于 2025.10.24 ·
1156 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

一文掌握 CodeX CLI 安装以及使用!

CodeX CLI 是一个可在本地终端运行的编码智能体,能够在本机指定目录中读取、修改并执行代码。CodeX CLI 为开源项目,使用 Rust 开发,侧重性能与效率。该项目托管于 GitHub(https://github.com/openai/codex),并在持续迭代中不断完善。
原创
博文更新于 2025.10.17 ·
2884 阅读 ·
17 点赞 ·
2 评论 ·
15 收藏

Claude Code 太贵?这五个工具都能让 Claude Code 支持更多自定义模型 + API 中转!

Claude Code 太贵?这五个工具都能让 Claude Code 支持更多自定义模型 + API 中转!
原创
博文更新于 2025.10.07 ·
1650 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏

一文了解国产算子编程语言 TileLang,TileLang 对国产开源生态的影响与启示

TileLang 旨在简化高性能 GPU/CPU 内核(Kernels)的开发,例如 MLA(Multi-Head Latent Attention)、GEMM(GEneral Matrix Multiplication)、Dequant GEMM、FlashAttention 和 LinearAttention 等。通过在 TVM 之上构建底层编译器基础设施,并采用 Pythonic 语法,tile-lang 使开发者能够专注于提升开发效率(门槛较低、易用),而无需牺牲实现最佳性能所需的底层优化。
原创
博文更新于 2025.10.06 ·
4037 阅读 ·
24 点赞 ·
3 评论 ·
29 收藏

2023 年 “华为杯” 第二十届中国研究生数学建模竞赛一等奖 总结和复盘

2023 年 “华为杯” 第二十届中国研究生数学建模竞赛一等奖 总结和复盘
原创
博文更新于 2025.09.06 ·
9420 阅读 ·
74 点赞 ·
12 评论 ·
194 收藏

详解为什么现在的 LLMs 大都是 Decoder-only 的架构

详解为什么现在的 LLMs 大都是 Decoder-only 的架构
原创
博文更新于 2025.06.28 ·
373 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

AAAI-2024 TimesURL:用于通用时间序列表征学习的自监督对比学习

AAAI-2024 TimesURL:用于通用时间序列表征学习的自监督对比学习
原创
博文更新于 2025.05.22 ·
370 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

使用 np.zeros_like(label) 保存预测概率时发现数据类型不匹配导致的隐式类型转换

使用 np.zeros_like(label) 保存预测概率时发现数据类型不匹配导致的隐式类型转换
原创
博文更新于 2025.04.29 ·
755 阅读 ·
6 点赞 ·
1 评论 ·
11 收藏

对张量 output_tensor - torch.Size([36, 1, 1000, 2048]) 进行 torch.mean(output_tensor, dim=-2).squeeze()

含义:对每个隐藏层、每个 “分段”,把 1000 个 Token 的 2048 维向量做平均,得到一个长度 2048 的 “全序列平均” 向量。该序列将所有 Token 的上下文信息融合为一个固定长度的向量,常用于文本分类、相似度计算等需要句子级表示的场景。:dim=-2 指的是从后往前数的第 2 个维度,也就是原张量的 “1000” 这一维(序列长度维度)。就是对原始序列在 Token 维度上进行 Token 平均后,去掉多余维度得到的最终特征表示。具体阐述此操作对输入张量进行了怎样的变换。
原创
博文更新于 2025.04.28 ·
674 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

一文了解 Sublime Text 4 最新安装教程

一文了解 Sublime Text 4 最新安装教程
原创
博文更新于 2025.03.25 ·
1028 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

PyTorch 深度学习框架中 torch.cuda.empty_cache() 的妙用与注意事项

PyTorch 深度学习框架中 torch.cuda.empty_cache() 的妙用与注意事项
原创
博文更新于 2025.02.20 ·
2520 阅读 ·
25 点赞 ·
0 评论 ·
10 收藏

解决问题: wps 无法加载此加载项程序 (c:\users\administratorappdata\roaming\microsoft\word\startup\mathpage.wll)

解决问题:wps 无法加载此加载项程序 (c:\users\administratorappdata\roaming\microsoft\word\startup\mathpage.wll)
原创
博文更新于 2025.02.18 ·
2876 阅读 ·
7 点赞 ·
1 评论 ·
13 收藏

为何实现大语言模型的高效推理以及充分释放 AI 芯片的计算能力对于企业级落地应用来说,被认为具备显著的研究价值与重要意义?

为何实现大语言模型的高效推理以及充分释放 AI 芯片的计算能力对于企业级落地应用来说,被认为具备显著的研究价值与重要意义?
原创
博文更新于 2025.02.06 ·
1119 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏

计算机科学与人工智能专业的应届毕业生应如何提高自身的就业的认知和竞争力?

深入分析:在当前中国高校的教育体系及就业市场环境下,计算机科学与人工智能专业的应届毕业生应如何提高自身的就业的认知和竞争力?
原创
博文更新于 2025.02.06 ·
1433 阅读 ·
26 点赞 ·
2 评论 ·
18 收藏

一文了解硅基流动(SiliconCloud):有前景的大模型云服务平台

一文了解硅基流动(SiliconCloud):强大的大模型云服务平台
原创
博文更新于 2025.02.03 ·
96550 阅读 ·
64 点赞 ·
16 评论 ·
101 收藏

啊哈?白宫正在调查 DeepSeek 人工智能对国安的影响

啊哈?白宫正在调查 DeepSeek 人工智能对国安的影响
原创
博文更新于 2025.01.29 ·
1284 阅读 ·
11 点赞 ·
1 评论 ·
21 收藏

十分钟掌握在 PyTorch 中构建一个深度神经网络,基本组件、步骤和代码实现,从导入模块和定义网络结构到训练和评估网络性能。

十分钟掌握在 PyTorch 中构建一个深度神经网络,基本组件、步骤和代码实现,从导入模块和定义网络架构到训练和评估网络性能。
原创
博文更新于 2025.01.23 ·
626 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏
加载更多