李海翔
腾讯数据库首席架构师
业界专家认证
分享 求更新 关注
提问 私信
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
了解更多业界专家
李海翔,腾讯数据库首席架构师。中国人民大学、北京林业大学硕士企业导师,CCF数据库专委会委员,北京市科技进步一等奖得主。著有《数据库查询优化器的艺术》《数据库事务处理的艺术》《分布式数据库原理、架构和实践》等。申请与授权专利70+,VLDB等大会发表论文若干篇,参与国家863重大专项、核高基等多项目研发。
  • 博客:664,201
    664,201
    总访问量
  • 424
    原创
  • 暂无
    排名
  • 511
    粉丝
个人成就
  • 领域专家: 数据库技术领域
  • 业界专家认证
  • 获得118次点赞
  • 内容获得38次评论
  • 获得266次收藏
  • 博客总排名1,790,608名
  • 原力等级
    原力等级
    7
    原力分
    3,015
    本月获得
    0
创作历程
  • 5篇
    2023年
  • 348篇
    2017年
  • 72篇
    2011年
成就勋章
TA的专栏
  • 数据库
    289篇
  • 操作系统
    8篇
  • 管理
    19篇
  • 读书笔记
  • 随想
  • 虚拟化
    4篇
  • 计算机基础
    15篇
  • 个人心情
    6篇
  • 搜索引擎
    1篇
  • 计算机史
    4篇
  • 架构/UI设计
    4篇
  • 其他
    7篇
  • 高性能计算
    8篇
  • 云计算
    4篇
  • 目录
    11篇
  • 工具
    2篇
  • 软件工程
    3篇
  • 大数据
    1篇
  • 数据库查询优化器
    16篇
  • 数据库测试
    1篇
  • 分布式计算
    1篇
  • 数据库的比较
    2篇
  • 调试
    1篇
  • 访谈
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

31人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

DTCC2021--数据异常系统化研究

本文系统地研究了数据库的数据异常及其对应的隔离级别,通过形式化的定义,总结和规范了数据异常的类型。基于形式化的解释,解释了不同数据异常之间的本质区别。同时,本文还通过偏序关系对数据异常进行分类,并阐述了数据异常与隔离级别之间的关系。另外,本文深入总结了前人在数据异常领域的研究工作,文献充实。文章具有极高的学术水平,作者分享了其在事务并发控制中数据异常和隔离级别上的深刻认知,另外作者也提供相应的开源工具用来检测数据异常,是一篇对事务并发控制方向非常有影响力的论文
原创
博文更新于 2023.10.18 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第三代分布式数据库(5)——一无是处的MySQL

一致性八仙图,可为放大镜,可为标尺,丈量彰显MySQL时,会有什么新发现?
原创
博文更新于 2023.09.21 ·
525 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第三代分布式数据库(3)——一致性八仙图

如何测试各个数据库的数据一致性?一致性八仙图和Jespen的差异在哪里?
原创
博文更新于 2023.09.07 ·
4402 阅读 ·
3 点赞 ·
7 评论 ·
12 收藏

第三代分布式数据库(2)——创新之源

数据库的创新源泉
原创
博文更新于 2023.09.06 ·
3120 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

第三代分布式数据库(1)——踢球时代

对数据库技术的发展历程总结、重点是对分布式数据库的发展历程的总结。
原创
博文更新于 2023.09.06 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TPC-H系列---4---TPC-H的22条查询语句分析

Q3,运送优先级查询Q3语句查询得到收入在前10位的尚未运送的订单。在指定的日期之前还没有运送的订单中具有最大收入的订单的运送优先级(订单按照收入的降序排序)和潜在的收入(潜在的收入为l_extendedprice * (1-l_discount)的和)。Q3语句的特点是:带有分组、排序、聚集操作并存的三表查询操作。查询语句没有从语法上限制返回多少条元组,但是TPC-H标准规定,查询结果只
原创
博文更新于 2017.03.13 ·
3538 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MySQL查询优化器--逻辑优化功能篇--目录

MySQL的SQL语句优化SQL优化的功能、思路一网打尽1 MySQL查询优化器--逻辑查询优化技术(一)--视图重写http://blog.163.com/li_hx/blog/static/18399141320137281118434/2 MySQL查询优化器--逻辑查询优化技术(二)--子查询优化(一)http://blog.163.com/li_hx/blog/static/183991
原创
博文更新于 2017.03.13 ·
780 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

高性能计算--HPCC--HPCC vs Hadoop篇

原文:http://hpccsystems.com/Why-HPCC/HPCC-vs-Hadoop翻译:那海蓝蓝,译文请见“【】”中的部分Read how the HPCC Platform compares to Hadoop说明:HPCC的相关部分,如果没有翻译,则参见:ttp://blog.163.com/li_hx/blog/static/183991413201163104244293/
原创
博文更新于 2017.03.13 ·
1462 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

ToprowDB Dynamic Server 查询优化技术---子查询优化--03-4

3.2 LATERAL连接3.2.1 什么是Lateral连接    我们知道,派生表是非相关的,即不能在派生表里引用其外部的同层次的其他对象。即如下SQL是错误的:select * from t1, (select idx as id2 fromt2 where t2.id2=t1.id1)as temp;temp对象作为一个派生表,其WHERE子句当中出现了“t2.id2=
原创
博文更新于 2017.03.13 ·
542 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TPC-H系列---3---TPC-H的22条查询语句分析

使用TPC-H进行性能测试,需要有很多工作配合才能获得较高性能,如建立索引,表数据的合理分布(使用表空间和聚簇技术)等。    本文从查询优化技术的角度,对TPC-H的22条查询语句和主流数据库执行每条语句对应的查询执行计划进行分析,目的在于了解各个主流数据库的查询优化技术,以TPC-H实例进一步掌握查询优化技术,对比主流数据库的实现情况对查询优化技术融会贯通。1. Q1,价格统计报告查询Q1
原创
博文更新于 2017.03.13 ·
3654 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

PostgreSQL的查询优化

PostgreSQL的查询优化     数据库管理系统中的SQL执行,有多种多样,从SQL语句类型上讲,有DDL、DML、DQL、DCL。不同语句,被数据库引擎执行,其执行方式、复杂程度都不相同。 其中,最为复杂的,是DQL,查询语句。查询语句的执行,在数据库中,又可以分为2个阶段,一是查询计划的生成(PG的处理方式包括:预处理、生成路径)、二是依据查询计划做查询动作的执行。 查询语句,
原创
博文更新于 2017.03.13 ·
3213 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

高性能计算--HPCC--优势篇

原文:http://hpccsystems.com/why-hpcc/benefits翻译:那海蓝蓝,译文请见“【】”中的部分Benefits【优点】
原创
博文更新于 2017.03.13 ·
1942 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

硬件对于虚拟化的支持

虚拟化支持,首先要了解硬件是否支持虚拟化,这个可以通过如下的方式进行验证:1 windows下可用的工具http://www.grc.com/securable.htmSecurAble probes the system's processor to determine the presence, absence and operational status of three modern pr
原创
博文更新于 2017.03.13 ·
832 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PostgreSQL之精妙的数据库导入导出工具架构 (十一)

(十一)详解逻辑备份---数据的导出1 概述    对象的定义导出,是要把对象的元信息读出后,把与对象相关的各种信息置于一个链表上,链表的每个节点是一个对象。每个表的数据,都被抽象为一个对象(链表上的所有对象都有自己的类型,TocEntry结构上有个成员“teSection    section”,是标识本节点的类型),这个对象在链表上占据一个节点的位置,当对象定义导出后,数据将被导出
原创
博文更新于 2011.12.19 ·
1918 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MySQL优化案例---半连接(semi join)优化方式 导致的查询性能低下

MySQL V5.6.x/5.7.x SQL查询性能问题一 简单创建一表,并使用存储过程插入一部分数据CREATE TABLE users (  user_id int(11) unsigned NOT NULL,  user_name varchar(64) DEFAULT NULL,  PRIMARY KEY (user_id)) ENGINE=InnoDB DEFAULT CHARSET
原创
博文更新于 2017.03.13 ·
2829 阅读 ·
7 点赞 ·
1 评论 ·
8 收藏

TPC-H系列---2---TPC-H表结构及表之间的关系

TPC-H包括8张表(表上有些约束等需要满足,参见TPC-H规范,本节不再罗列),如下:PART:表示零件的信息,如表4-1所示。SUPPLIER:表示供货商的信息,如表4-2所示。PARTSUPP:表示供货商的零件的信息,如表4-3所示。CUSTOMER:表示消费者的信息,如表4-4所示。ORDERS:表示订单的信息,如表4-5所示。LINEITEM:表示在线商品的信息,如表4-6所示。NATI
原创
博文更新于 2017.03.13 ·
6859 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

MySQL查询优化器--语义优化(一)

14.1.8 语义优化   我们在2.2.8节介绍了语义优化技术,在8.1.9节介绍了PostgreSQL支持的语义优化技术,本节介绍MySQL对于语义优化技术的支持情况。    我们在第13章曾经简单介绍过add_not_null_conds函数,这是从代码级介绍MySQL对于语义优化技术的支持,MySQL通过这个函数,部分实现了语义优化的功能(这是通过为SQL查询语句增加DDL语句定义
原创
博文更新于 2017.03.13 ·
928 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

云计算有感

2011年7月8日,北京软件行业协会CTO俱乐部第一期活动暨“云计算和云应用”产业交流会,全天听了十多场云计算报告,一些随笔,记录感受。   云喊了几年了,但凡没有和云沾边喊出“云”的公司和个人,已经落伍了。大公司开始着手建立云,进行地如火如荼,实在是风起云涌;以云为业务的新公司如雨后春笋,冒出了一批,还形成了产业园区似乎要成规模成气候;没有和云挂钩的单位,也想着怎么从自己的角度,联系上“云”
原创
博文更新于 2017.03.13 ·
2001 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深入理解缓冲区(八)

4.1.4.2           Buf的元信息结构Buf的元信息数据块的结构信息如下,描述了每一个缓存块的使用情况:typedef struct sbufdesc{       BufferTag      tag;                /* ID
原创
博文更新于 2011.10.08 ·
885 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据库查询中的表连接

1         概述数据库中的表,是一个二维对象,由行和列构成;列是表的元数据,行是表的数据;所以,表与表之间做连接操作,无非是表的行和列与其他表的行和列之间的关系。数据库中常有交叉连接、内连接、外连接、半连接、反半连接、自然连接等概念,这些连接方式,代表了不同的含义
原创
博文更新于 2011.09.12 ·
3984 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏
加载更多