fengxuezhiling
码龄13年
求更新 关注
提问 私信
  • 博客:34,837
    34,837
    总访问量
  • 12
    原创
  • 3
    粉丝
  • 6
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2013-03-06
博客简介:

fengxuezhiling的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得1次评论
  • 获得21次收藏
  • 代码片获得138次分享
  • 博客总排名790,138名
创作历程
  • 2篇
    2017年
  • 13篇
    2016年
成就勋章
TA的专栏
  • 算法
    2篇
  • 爬虫
    2篇
  • BeautifulSoup
  • kaggle
    1篇
  • python
    4篇
  • 机器学习
    2篇
  • 深度学习
    2篇
  • 问题总结
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

30人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

八大排序算法 python

# -*- coding:utf-8 -*-def insert_sort(lists):    # 插入排序    for i in range(1,len(lists)):        key = lists[i]        j = i-1        while j >= 0:            if lists[j] > key:       
原创
博文更新于 2017.10.20 ·
314 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

聚类和EM算法

聚类是一种无监督学习,它通过对无标记训练样本的学习来寻找这些数据的内在性质。聚类的思想:将数据集划分为若干个不相交的子集(簇),每个簇对应一类,但通常聚类算法不会告诉你这些簇分别代表什么意义,只是这样分成这些不相交的簇。聚类的作用:作为一种探索性分析方法,分析数据的内在性质,寻找数据的分布规律作为分类的预处理过程,并不直接数据分析,首先对需要分类的数据进行聚类,然后对聚类出
原创
博文更新于 2017.09.24 ·
2283 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

python pandas 处理日期数据

数据类型及操作Python 标准库的datetimedatetime模块中的datetime,time,calendar等类都可以用来存储时间类型以及一些其他转换与运算for example:from datetime import datetimenow=datetime.now()print now  #2016-09-11 16:02:
原创
博文更新于 2017.09.24 ·
9571 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

如何解决“ImportError: No module named pylab”

1.  首先 保证  python-numpy python-scipy python-matplotlib 安装完毕2.work with itfrom matplotlib import pylabfrom pylab import *亲测可行
原创
博文更新于 2016.11.07 ·
10211 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

python中文编码+html中的回调,bejson显示中文

问题一: UnicodeDecodeError: 'ascii' codec can't decode byte 0xe3 in position 0: ordinal not in range(128)解决:import sysreload(sys)sys.setdefaultencoding('utf8')http://docs.python.org/howto/un
原创
博文更新于 2016.11.07 ·
655 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow的基本用法

基本使用TensorFlow具体流程:使用图 (graph) 来表示计算任务.在被称之为 会话 (Session) 的上下文 (context) 中执行图.使用 tensor 表示数据.通过 变量 (Variable) 维护状态.使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
转载
博文更新于 2016.10.10 ·
451 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

关于深度学习框架TensorFlow的调研

事件:2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院完成在线TensorFlow中文文档翻译。在线阅读地址为:http://wiki.jikexueyuan.com/project/tensorflow-zh/ 首先感谢那些翻译人员,真心给力,给了我们这种新手方便学习的机会------------------------------
原创
博文更新于 2016.10.10 ·
771 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python 开发简单爬虫 by CL(一)

一.爬虫简介爬虫:一段自动抓取互联网信息的程序
原创
博文更新于 2016.09.29 ·
650 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

爬取大众点评黄焖鸡米饭的数据

学习python已经一段时间,就想着利用他爬取大众点评上的一些数据,用于分析。这里,我选择爬取国内各个地区和省份关于黄焖鸡米饭的店面数据具体的格式:店面 id,省份,城市,开店时间,店名首先声明:大众点评的数据,并不是很好爬取的。注意:他会禁止IP我通过下面方法得以解决1、UserAgent经常换一换;2、访问时间间隔设长一点,访问时间设置为随机数;sleep()3
原创
博文更新于 2016.09.28 ·
1089 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SVM

支持向量机1.基于最大间隔分隔数据优点:泛化错误率低。计算开销不大,结果易解释缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题使用数据:数值型和标称型数据我们希望找到离分隔超平面最近的点,确保它们离分隔面的距离尽可能远在这里仅仅简单介绍,更为详细的数学需要自己去专门的书籍中学习。2 .求解(SMO)SMO表示
原创
博文更新于 2016.09.10 ·
447 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

为什么使用python

软件质量:    可读写、一致性、软件质量    支持软件开发的高级重用机制提供开发者的效率:    代码只有java或C++的1/5~1/3    无须编译链接,提高了程序原的效率程序的可移植性:    用户图像界面、数据库接入、基于Web的系统等标准库的支持:组件集成:    可以调用C或C++的库    可以被C和C++程序
转载
博文更新于 2016.09.06 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python ---numpy

本文主要包括如下内容:1.数据类型 2.数组类型 3.类型转换 4 .创建数组 5.索引 6.花式索引 7.切片(Slicing)8.处理数据的形状I.Numpy中的多维数组称为ndarray,主要包括两个部分:数据本身和 描述数据的元数据Numpy数组通常表示是由相同种类的元素组成。可以向量化处理数组。a=arange(5)   a.dtype  dtype('int64
原创
博文更新于 2016.09.02 ·
559 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大数据竞赛平台——Kaggle 入门篇

大数据竞赛平台——Kaggle 入门篇这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!1、Kaggle简介Kaggle是一
转载
博文更新于 2016.08.21 ·
4982 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

14数学建模竞赛D题

一.问题一1.数据预处理---->数据相关性分析-->粗大误差分析-->针对果蔬品种的营养素成分和含量,建立分级打分制度,定义‘营养价值’,‘常见度’,‘研究价值’等指标--》筛选出8种水果和6种蔬菜2.回归模型,预测各种果蔬的年产量3.Logistic模型对预测结果进行修正,改进回归模型的产量预测结果关键词:线性回归,多项式回归, Logistic 复合模型
原创
博文更新于 2016.08.10 ·
1106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SVM Matlab工具箱的使用(一)

本次是我自己刚学习svm,并在faruto视频上学习svm的笔记。一.SVM 由Vapnik首先提出,svm的主要思想是建立一个超平面作为决策曲面,使得正例与反例之间的隔离边缘被最大化。svm的优点:1.通用性(能够在各种函数集中构造函数)2.鲁棒性(不需要微调)3.有效性(在解决实际问题中属于最好的方法之一)4.计算简单(方法的实现只需要利用简单的优化技术)5.理论上
原创
博文更新于 2016.07.11 ·
1265 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多