工业甲酰苯胺
码龄3年
求更新 关注
提问 私信
  • 博客:1,118,735
    社区:10
    1,118,745
    总访问量
  • 997
    原创
  • 1,120
    排名
  • 9,354
    粉丝
  • 0
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
加入CSDN时间: 2023-06-19
博客简介:

dsgdauigfs的博客

查看详细资料
个人成就
  • 获得19,782次点赞
  • 内容获得48次评论
  • 获得16,139次收藏
  • 代码片获得2,146次分享
  • 原力等级
    原力等级
    8
    原力分
    6,795
    本月获得
    202
创作历程
  • 411篇
    2025年
  • 517篇
    2024年
  • 94篇
    2023年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • 人工智能
    机器学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

39人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

技术面:MySQL篇(为啥会有非关系型数据库?MySQL的数据存储一定在磁盘吗?)

MySQL的数据存储不一定是基于磁盘的。虽然大多数情况下,MySQL使用InnoDB或MyISAM等存储引擎将数据存储在磁盘上(如.ibd或.MYD文件),但它也支持MEMORY存储引擎,允许将数据完全存储在内存中,从而获得极快的查询速度。使用MEMORY存储引擎时,数据仅存在于内存中,重启MySQL服务后数据会丢失,因此它适用于临时数据或缓存场景,而非持久化数据存储。
原创
博文更新于 昨天 17:41 ·
527 阅读 ·
18 点赞 ·
0 评论 ·
9 收藏

AI重构低代码/无代码开发:不止效率提升,更是开发范式革命

AI在低代码/无代码开发中的积极作用,本质上是技术融合推动的软件开发民主化进程。从技术层面看,AI通过NLP、生成式AI、机器学习等技术,重构了开发全流程,解决了传统低代码/无代码的核心痛点;从实践层面看,AI+低代码/无代码在政务、项目管理等场景的落地,证明了其在提升效率、降低成本、适配需求变化等方面的核心价值;从行业层面看,这种融合不仅重构了开发者的角色定位,更降低了软件开发的门槛,让更多非技术人员能够参与到数字化建设中。
原创
博文更新于 昨天 16:00 ·
1096 阅读 ·
23 点赞 ·
0 评论 ·
20 收藏

Oracle等待事件:性能诊断与优化的核心指南

等待事件是Oracle数据库性能优化的关键抓手,自Oracle 7.0.12版本引入以来,已成为DBA定位瓶颈、优化系统的核心工具。它通过记录进程在数据库操作中的各类等待行为,直观反映系统资源竞争、I/O瓶颈等潜在问题,为针对性优化提供明确方向。
原创
博文更新于 前天 17:41 ·
842 阅读 ·
23 点赞 ·
0 评论 ·
24 收藏

低代码AI入门指南:别让“AI赋能”变成“AI负能”

AI Graveyard的1289个失败项目告诉我们:技术浪潮中,最危险的不是技术落后,而是把技术当目标而非工具。低代码AI的核心价值,从来不是“不用写代码”或“AI多智能”,而是“让技术更快地解决业务问题”。作为技术人员,我们需要警惕“技术炫技”的诱惑,回归“业务价值优先”的本质——当AI能帮运维人员提前发现设备故障,当审批流程能让群众少跑一次腿,当数据统计能让管理者快速决策,“AI赋能”才真正落地。低代码AI的入门,不需要高深的算法知识,只需要“找准痛点、简化技术、快速验证”的务实思维。
原创
博文更新于 前天 16:26 ·
709 阅读 ·
25 点赞 ·
0 评论 ·
18 收藏

一文读懂 PHP PSR 接口 PSR-3、PSR-7、PSR-11、PSR-15 完整指南

什么是 PSR?由 PHP-FIG 发布的社区标准,侧重接口与规范。它只约定“契约”,不规定实现,因此不同库可以顺畅互通。接口 vs 实现接口规定“做什么”,实现负责“怎么做”。代码若依赖接口,就能在不改调用点的前提下替换实现。
原创
博文更新于 2025.12.17 ·
535 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

效率跃迁 10 倍:AI 与低代码的深度融合,正在重塑企业开发生态

AI引领的低代码革命,表面看是开发效率的提升,本质是“人的解放”——让技术人员从重复劳动中解放,聚焦创新;让业务人员从技术依赖中解放,实现“需求直达应用”。这种解放带来的不仅是开发周期的缩短,更是企业数字化转型速度的提升。对于IT互联网产品技术人员而言,这场革命既是挑战也是机遇。固守传统编码能力,可能会被“AI+低代码”的效率浪潮淘汰;而主动拥抱新技术,将AI作为工具提升自身核心能力,才能在未来的开发生态中立足。最后抛出两个问题,欢迎在评论区讨论:你认为AI+低代码最先取代的开发岗位是什么?
原创
博文更新于 2025.12.17 ·
938 阅读 ·
33 点赞 ·
0 评论 ·
22 收藏

字符串匹配算法

KMP算法的关键在于构建一个部分匹配表(也叫失败函数或者next数组),这个表记录了当匹配失败时,模式串指针应该回退到的位置,让算法跳过已知不可能匹配的位置,提高匹配效率。:使用部分匹配表在文本串中查找模式串从左到右同时遍历文本串和模式串当字符不匹配时,根据next数组回退模式串指针当模式串完全匹配时,记录匹配位置并继续查找其他匹配。如果发生不匹配,通过以下规则计算跳转距离:坏字符规则:根据不匹配字符在模式串中的最右位置决定跳转距离好后缀规则:根据已匹配部分在模式串中的重复情况决定跳转距离。
原创
博文更新于 2025.12.16 ·
606 阅读 ·
19 点赞 ·
0 评论 ·
29 收藏

AI低代码实测:别被“伪智能”忽悠,这3类平台才真能提效

最后必须强调:AI低代码不是“取代开发者”,而是“解放开发者”——把模型调优、数据处理、重复编码等工作交给AI,让开发者聚焦业务创新和逻辑设计。判断一个平台是否有价值,关键看它是否让你“少加班、多创新”。互动话题:你在使用AI低代码平台时,踩过哪些“伪AI”的坑?是模型集成困难,还是AI能力华而不实?欢迎在评论区分享你的实战经验,一起避坑成长。
原创
博文更新于 2025.12.16 ·
622 阅读 ·
24 点赞 ·
0 评论 ·
12 收藏

Java关键字解析之abstract:抽象的本质、规范定义与多态基石

在Java面向对象的世界里,abstract是一个充满“前瞻性”的关键字——它像一张“设计蓝图”,将类或方法标记为“未完成”或“待实现”,强制后续开发者遵循预设的规范去填充细节。这种抽象性并非模糊不清,而是通过“定义标准、隐藏实现、预留扩展”的方式,将复杂系统的共性抽离出来,为多态和代码复用奠定基础。今天,我们沿着“是什么→为什么用→怎么用→设计哲学与避坑指南”的思维路径,系统拆解abstract关键字的核心特性与应用场景,揭示它作为“抽象思想载体”的深层价值。abstract的本质是声明“抽象”
原创
博文更新于 2025.12.15 ·
915 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

拆解 AI + 低代码:为什么它是企业开发的下一个十年?

AI与低代码的融合,本质是技术普惠的体现——它让业务人员摆脱了“技术依赖”,能够将自己的业务想法快速转化为系统应用;让开发人员从重复劳动中解放,专注于更具创造性的核心技术研发;让企业以更低的成本、更快的速度实现数智化转型。未来,随着大模型技术的迭代与低代码平台的成熟,二者的融合将呈现两大趋势:一是“端到端的智能开发”,实现“需求描述→系统生成→上线运维”的全流程自动化;二是“行业化深度适配”,针对制造、政务、医疗等行业打造专属的AI模型与组件库,进一步降低行业应用开发门槛。
原创
博文更新于 2025.12.15 ·
789 阅读 ·
22 点赞 ·
0 评论 ·
17 收藏

AI是风口还是泡沫?一个独立开发者的冷思考

1、对个人:AI让效率提升、门槛降低,一个人就能干过去一个团队做的事情。我本身就是个很好的例子,今年七月份开始做独立开发,上线了一款AI产品:楼里,并且开源了两个实践总结的知识库:《独立开发者》和《AI实践》。这在过去,用四个月时间几乎不可能做到。2、对企业:很多过去繁重的流程变成自动化,客服、销售到研发,越来越多环节可以交给AI处理。创新的成本也会降低,原本需要团队调研、设计、开发的过程,现在AI能极大缩短周期,让中小企业也能快速试错。
原创
博文更新于 2025.12.12 ·
495 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

双剑合璧,效率倍增:AI + 低代码如何重塑企业技术架构?

AI与低代码的融合,不仅是技术层面的创新,更是企业数字化转型范式的变革——从"技术驱动"转向"业务驱动",从"专业主导"转向"全员参与",从"缓慢迭代"转向"快速创新"。这种变革正在打破业务与技术的壁垒,让数字化转型真正融入企业的日常运营。对于企业而言,拥抱AI+低代码不是选择问题,而是生存问题。在快速变化的市场环境中,只有通过技术融合提升转型效率和创新能力,才能在竞争中占据优势。
原创
博文更新于 2025.12.12 ·
1258 阅读 ·
36 点赞 ·
0 评论 ·
15 收藏

Java垃圾收集器全解:从Serial到G1的进化之旅

在Java的世界里,垃圾收集器就像是默默无闻的清洁工,在我们不注意的时候悄悄清理内存垃圾。不同的清洁工有不同的工作方式,有的喜欢一次性彻底打扫(Stop The World),有的则喜欢边工作边让你继续玩耍(并发收集)。今天,就让我们一起来认识这些各具特色的"清洁工"吧!Java垃圾收集器的发展历程就像清洁方式的进化:从最初需要全员离开的彻底打扫(Serial),到可以边工作边打扫的智能清洁(CMS),再到分区打扫、时间可控的现代清洁系统(G1)。每种收集器都有其适用场景,没有绝对的最好,只有最适合的。
原创
博文更新于 2025.12.11 ·
876 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

企业大模型应用的 “最后一道坎”:AI + 低代码如何重构开发链路?

回顾企业数字化转型的历程,从传统开发到低代码,再到如今的AI+低代码,本质是技术不断“下沉”的过程——让开发能力从专业工程师手中,传递到业务人员手中。大模型的价值不在于“能写诗歌、能画画”,而在于将复杂的智能能力融入生产生活的每一个环节。AI+低代码打通的不仅是大模型应用的最后一公里,更是“技术能力”与“业务需求”之间的鸿沟。对于企业而言,现在需要做的不是盲目追逐大模型热点,而是选择合适的AI+低代码平台,让智能能力真正服务于业务增长。最后抛个话题:你们企业在大模型落地过程中,遇到过最头疼的问题是什么。
原创
博文更新于 2025.12.11 ·
1126 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏

npm几个实用命令

最近接到公司安全团队的项目风险表格,列出了当前前端项目的一些安全风险,大概有190多项,第一个大坨是XSS的,第二大坨就是npm包需要升级的,看了下,需要升级的大概有55个包,最近在做这些包升级的时候发现了NPM以前很少用,但是确很实用的几个命令,特记录分享。
原创
博文更新于 2025.12.09 ·
781 阅读 ·
20 点赞 ·
0 评论 ·
25 收藏

破局传统开发痛点!低代码 11 大核心能力拆解,从入门到企业级落地

在解释低代码之前,我们先厘清一个核心误区:低代码≠零代码。零代码更偏向“无技术门槛”,主打纯拖拽配置;而低代码是“可视化开发+代码增强”的混合模式,既保留了可视化的高效,又通过代码扩展打破了功能边界,本质是“用平台能力替代重复编码,用定制代码解决复杂场景”。从技术架构上看,低代码平台本质是一套“封装了通用技术组件的开发框架”——它将Spring Cloud、Vue、MyBatis等主流技术栈封装为可复用模块,把数据库设计、接口开发、权限控制等通用场景转化为可视化配置,开发者只需聚焦业务逻辑的差异化实现。
原创
博文更新于 2025.12.09 ·
844 阅读 ·
17 点赞 ·
0 评论 ·
19 收藏

十大经典排序算法

内部排序:数据记录在内存中进行排序。外部排序:因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。插入排序希尔排序选择排序冒泡排序归并排序快速排序堆排序基数排序等,本文只讲解内部排序算法。
原创
博文更新于 2025.12.08 ·
830 阅读 ·
26 点赞 ·
0 评论 ·
20 收藏

AI低代码:是效率革命还是过渡产物?2025年技术人该如何抉择

回到开篇的问题:AI低代码值得看好吗?答案是肯定的,但这种看好并非盲目追捧,而是基于其解决实际开发痛点的价值判断。2025年的AI低代码,已不是“玩具工具”,而是支撑企业数字化转型的核心基础设施,尤其在非电商领域,其价值正在加速爆发。对于技术人员而言,AI低代码是提升效率的利器,而非替代自身价值的“威胁”。真正的核心竞争力,在于“AI无法替代的技术深度”和“业务理解能力”——用AI完成重复劳动,将精力聚焦于核心逻辑设计和架构优化,这才是AI时代技术人的生存之道。
原创
博文更新于 2025.12.08 ·
923 阅读 ·
21 点赞 ·
0 评论 ·
14 收藏

Redis终极面试题:从基础到原理,从概念到实战的10道“必杀题”

满足任一条件:Hash/List/Set/ZSet:元素数>1000或总大小>100KB。Redis面试的核心是理解原理+实战经验基础概念:Redis是什么、特点、数据结构;核心机制:持久化、过期删除、单线程;分布式:哨兵、集群;生产实践:缓存问题、大Key、高可用设计。佛祖让我来巡山from=001YH。
原创
博文更新于 2025.12.05 ·
1015 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

数字化转型失败率80%?被忽略的“技术加速器”,才是破局关键

数字化转型失败率高达80%,不是因为技术不够先进,而是因为技术与业务脱节。技术是服务业务的工具,不是用来“炫技”的资本。所谓的“技术加速器”,本质是“让技术回归业务本质”:用轻量化架构避免过度设计,用可视化工具和代码生成提升开发效率,用标准化生态实现快速集成,用国产化适配保障安全稳定。这些能力不需要企业投入巨额资金,也不需要组建庞大的技术团队,关键是选对工具、找对方法。小步快跑,快速试错:不要一开始就追求“大而全”的系统,先聚焦核心痛点,用最小的成本验证业务价值,跑通后再逐步扩展。工具优先,解放人力。
原创
博文更新于 2025.12.05 ·
823 阅读 ·
36 点赞 ·
0 评论 ·
14 收藏
加载更多