dog250
码龄18年
求更新 关注
提问 私信
  • 博客:30,197,704
    社区:8,247
    视频:353
    30,206,304
    总访问量
  • 2,385
    原创
  • 33
    排名
  • 31,447
    粉丝
  • 334
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2008-03-06
博客简介:

TCP/IP

博客描述:
TCP, QUIC 传输优化
查看详细资料
个人成就
  • 领域专家: 操作系统技术领域
  • 获得15,225次点赞
  • 内容获得4,713次评论
  • 获得22,436次收藏
  • 代码片获得3,211次分享
  • 原力等级
    原力等级
    9
    原力分
    11,630
    本月获得
    66
创作历程
  • 162篇
    2025年
  • 183篇
    2024年
  • 142篇
    2023年
  • 151篇
    2022年
  • 88篇
    2021年
  • 153篇
    2020年
  • 144篇
    2019年
  • 104篇
    2018年
  • 62篇
    2017年
  • 96篇
    2016年
  • 76篇
    2015年
  • 90篇
    2014年
  • 103篇
    2013年
  • 100篇
    2012年
  • 151篇
    2011年
  • 595篇
    2010年
  • 7篇
    2009年
成就勋章

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

25人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

以城区停车场问题开始

如图,任意停车场,步行进入环城河公园步道,一圈 6.5 公里,慢跑需 35~45 分钟,如果停在现厂,盒马停车场,徒步不到 20 分钟即可到达西门吊桥,上去就到了西大街,途中沿河看柳,尽是公园美景,岂不是更好的选择?只有远距离出行才关注时间和吞吐,轿车后备箱拉不了多少行李时就会考虑托运,物流,甚至干脆租一辆面包,皮卡,但逛街却不在乎时间,因为收获在途中,这个区别涉及各种网络的传输协议的设计,不得不细察。本周就着这个话题,回到我的本行,网络传输技术,但不管网络传输还是出行,结构决定行为。
原创
博文更新于 6 小时前 ·
558 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

终于有人掀 TCP/IP 了

总之,在一个受控的,规则的好网络(DCN 大多符合),要用最大胆但最简单的策略处理传输(例如 NACK-GBN,ECN,Credit),反之,再一个分布式的,不规则的尽力而为网络(比如广域网),则要用最保守谨慎的策略(例如 SACK),哪怕复杂一些的策略处理传输,背后的理念是没有免费的午餐,捡自家的特产来交易。再次申明我的观点,TCP/IP 并不适合所有场景,点名就是不适合数据中心,特别是 AI 集群等高性能场景,它需要有自己的通信生态,彻底脱离 TCP/IP。浙江温州皮鞋湿,下雨进水不会胖。
原创
博文更新于 2025.12.13 ·
7018 阅读 ·
21 点赞 ·
0 评论 ·
11 收藏

LLM(大语言模型)和高尔顿板

既然 LLM 本质上是个概率机,而那些涌现出来的神奇效果又被各种矩阵,张量,非线性函数绕晕了头,而我们连自己头脑也同样不了解,再加上程序员看不起哲学,既然一切成了一团迷雾,概率的事还要概率自身来解释,而高尔顿板就是一个现成的概率机,所以用它来可视化概率导致的神奇效果的原理,显然高尚。下面实验所有代码均在。在我的世界观中,我们既是高尔顿板中的小球,受概率支配,又是调整钉子的训练者,能改变概率,还是观察结果的记录者,使概率坍缩,在这看来,量子力学就是世界的公设,基于此,我们是在发现世界,还是在训练世界。
原创
博文更新于 2025.12.13 ·
7044 阅读 ·
17 点赞 ·
0 评论 ·
24 收藏

世界的本质是概率,没有因果

Cosmos 和近代科学孤立分析空间,时间,物质,能量以及物理定律相互作用的 Universe 不同,它强调秩序与和谐的哲学和诗意,源自古希腊,本意为 “秩序”,与“混沌”相对,常带有系统,美丽,宏伟,和谐,统一的审美或哲学内涵,在古希腊归纳,演绎传统之前,世界也是天人合一的整体,本文更多倾向于 Cosmos 思想。时间在物理上可被测量,但它并非一定就是一个实在的物理量,如上图所示,时间的度量本质上是 “具有反演对称性的钟摆嘀嗒”,这是一种典型的,常用的正交量测量,存在的是 L,R 的位置,而不是时间。
原创
博文更新于 2025.12.12 ·
7991 阅读 ·
42 点赞 ·
2 评论 ·
50 收藏

让算法去学习,而不是去启发

从大的方面讲,双 11 备战,12306 承担海量并发连接访问,并不是靠什么牛逼的算法调度资源,而是双 11,长假等,它就在那里,时间段固定,在此之前足够久,资源早就被人为配置好了,从修改配置,切换线路到搬机器上架上电,这难道不比启发式算法来得高效,但在多数编程者眼里,这不值得一提。算法,就是一篇作文,时间,地点,事件,等等其它维度,或者说就是一个世界模型,足够多的状态映射到多够多的维度,建模,调参学习,无非如此,对于类似传输优化判定,WiFi 切换这种特定场景的调优,就是写一篇命题作文。
原创
博文更新于 2025.12.06 ·
7187 阅读 ·
14 点赞 ·
0 评论 ·
10 收藏

从伪共享到多核与 cacheline 的角力模型

参数 0.2 控制并行效率衰减,较小值意味较好扩展性,此项为递增凹函数,一阶导 > 0,二阶导 < 0,符合并行扩展性直观,初始扩展性好,边际收益递减。描述 cacheline 大小影响,类似并行项,小 m 时近似线性增长,反映缓存增加提升性能,随 m 增大边际收益递减,终趋于饱和,参数 0.15 控制缓存效益衰减,其值略小于并行项参数 0.2,反映系统中缓存效率饱和较并行效率饱和更缓,这正是使用多级 cache 的理由,因为这确实比分解代码更简单,此项使模型能捕捉内存子系统影响。
原创
博文更新于 2025.12.06 ·
11525 阅读 ·
28 点赞 ·
0 评论 ·
27 收藏

大模型知识蒸馏技术

进一步思考,“知识蒸馏” 其实是我们最拿手的传统教育模式,在古代,背会唐诗三百首,不会写也会偷,在当代,虽然我们的思维方式不是那么异想天开,但我们的考试成绩秒杀全宇宙,这背后都是对范式的记忆和应用,即,将知识的范式当作知识本身来学习,因此才得以弯道超车,省却了大量时间,这岂不就是大模型蒸馏。这个过程中,我是大模型,女儿是小模型,我由于 30 多年的积累训练,早就有了各种解题范式,而她不需要重复这 30 的过程,只需要记住我的范式即可。,这使得在温度 T 变化时,梯度的尺度相对稳定,有利于优化。
原创
博文更新于 2025.12.05 ·
10062 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

CORDIC 算法杂感

它展示了,在计算机科学中,除了从顶层数学理论降维打击来设计算法之外,还存在着另一条古法路径,从底层的计算介质的特性(如 FPGA,GPU)出发,通过极致的精巧设计,孕育出与之完美契合的算法,这种算法可能没有普适的理论美感,但在其特定的应用领域内,它就是经理。CORDIC 是一种非常巧妙且高效的算法,用于在数字电路中计算三角函数,双曲函数等数学函数,它的核心优势在于只使用简单加法,位移,查数组等操作,避免了复杂运算,非常适合在硬件资源有限的系统中实现。算术和数学的区别非常大,这里说不完,总之不能混为一谈。
原创
博文更新于 2025.11.29 ·
12793 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

重读 VJ 拥塞控制后的思考

首先,ACK 能返回,意味着网络是畅通的,其次,返回 ACK 的数量度量了网络被腾出的空间。早期的网络实际上是一个受控仲裁网络,类似令牌网,它既复杂又低效,显然这不是设计者的初衷,也因此它的规模无法扩展,利用率不高,反而延迟了问题的暴露,当网络在 1980 年代初过渡到 TCP/IP,起搏于 Unix 和 socket 接口的寒武纪大爆发开始,人们意识到,早期的网络对大规模自组织的依赖会产生意想不到的后果,果不其然,网络很快就拥塞崩溃了。以上就是 VJ 提出慢启动的背景。
原创
博文更新于 2025.11.29 ·
8516 阅读 ·
34 点赞 ·
0 评论 ·
34 收藏

LLM(大语言模型) 的本质是概率

不会类比,不懂共情(这两点一向是被计算机背景的理工群体鄙视的),没有泛化能力,无法举一反三,不会归纳演绎,这才是 AI 的瓶颈,而不是铺天盖地的算力,以及那些以为 scale 就够了的能力,但在本质上,只要 AI 仍然是个概率预测机器,那些 scale up 也好,scale out 也好,都仍然在做概率预测,正如它们名字一样,规模扩大了而已。这个过程最精妙的结果是,在交叉熵损失和 Softmax 函数的完美配合下,损失对于最初输出的 Logits 的梯度,可以简化为一个极其优雅的公式,我在。
原创
博文更新于 2025.11.29 ·
13412 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

谈谈具身智能

人类不如 LLM 学得快,但 LLM 始终还是不能真正理解世界,没有归纳,抽象,类比,泛化的能力,原因就在于它只是一个抽象的语言模型,而语言本身就是抽象,泛化的结果,它不是世界的本质,它只是勾勒世界的轮廓,而世界的本质是物理定律,探知这个本质需要去和物理世界世界接触,而不是仅仅接收对它的语言描述,我非常看好具身智能。物理世界的规则是固定的,学习它即可。依靠与物理世界互动,获得物理因果,用这种因果指导动作,这才是真正意义上的 “理解”,它知道自己的机械手臂拍经理的头,经理的头会碎,这不是概率,这是物理因果。
原创
博文更新于 2025.11.28 ·
9571 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

为什么缩放点积使梯度更稳定

(buffer 的平方反比律),我是三句话不离本行,AIMD 对 buffer 的占用就是按 n 缩放,所以它随 n 越来越小,与本文结论一致,非常公平地使 “权重会趋近于均匀分布”,公平性是 AIMD 特征,但 softmax 恰恰需要 “选择性聚焦”,而不是公平。通过缩放点积,将 softmax 函数的输入控制在一个合理的动态范围,防止了梯度消失,确保了训练过程的稳定和高效,缩放后的注意力权重分布也更平滑,允许模型同时关注多个相关位置,而不是过度聚焦于单一位置,从而捕获更丰富的上下文信息。
原创
博文更新于 2025.11.22 ·
12983 阅读 ·
21 点赞 ·
0 评论 ·
13 收藏

一个读写锁实现的迭代,优化和回忆

都是很早以前的事了,2008~2009 年,当时我只是觉得 Linux 内核什么都好,初学者,什么都想模仿它,就好像刚学英语时,超市看到包装袋上英文总想发声念一念显得自己懂一样,反倒是多学了一些的时候,才觉得自己啥也不是,也就不好意思再卖弄那一丢丢演技了。反正在当时没有想到 read 临界区的同步覆盖导致 write 饿死,今天能顺手想出来并解决,反倒更加平常心,不想长篇大论了,仅立帖备忘,待日后再进步,再回来鄙视嘲笑。浙江温州皮鞋湿,下雨进水不会胖。
原创
博文更新于 2025.11.22 ·
12137 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

多头注意力:理解人类语言的混沌和秩序

多数计算机理工背景完全不懂也不在乎混沌系统,复杂系统,也不懂控制论,他们不喜欢 “涌现” 这种词,只要不能量化,解释不清楚的术语,他们就觉得是拿个高级词汇 “糊弄” 一下的玄学,可他们看不起文史,看不起宗教,连玄学是什么依旧也不懂。在他们眼里,只有程序,代码,数学公式才是唯一可以解释世界的东西,我对这种世界观极度反感,且从不参与相关讨论,我崇尚一个随机但可描述的世界,而不是万般因果缠绕的可解释的世界。1 号成员专注于语法,它分析 “经理的皮鞋” 这个短语,建立所属关系,理解 “皮鞋” 是 “经理” 的。
原创
博文更新于 2025.11.21 ·
12506 阅读 ·
24 点赞 ·
0 评论 ·
6 收藏

程序员的幻觉与系统的边界

强调 “不能丢”,“一定要处理”的这帮人显然不明白什么叫做系统的边界,既然他们的系统没有边界,他们也就没有诸如 ”额定容量“ 和 ”当前负载“ 的概念,这在编程者群体非常常见,因为软件分层和解耦的原则总在强调 ”让编程者一心关注业务逻辑,而无需关注底层细节“,就好像底层可以处理任意情况,但他们不知道,底层是一个 ”有容量限制“ 的系统,是的,一切都是系统,遵循 Little’s Law 的系统。某群里又出现了略显无知的讨论,我的结论为 ”在计算机相关专业背景的理工男女眼里,系统是绝对可靠的,无边界的。
原创
博文更新于 2025.11.21 ·
15678 阅读 ·
6 点赞 ·
1 评论 ·
7 收藏

GELU 函数如何避免神经元死亡

ReLU 在神经元可能最需要调整时完全剥夺其更新能力(就在于在数学是 0.00001 和 0 天上地下,但在实际中它们相等),仅靠渺茫的外部因素可能救活,GELU 却可以通过保留微弱的梯度以避免数学上的 “乘以 0”,使神经元具备自我调整能力。可见,ReLU 对负输入的输出恒为 0,这是神经元死亡的原因,而 GELU 则对负输入会输出一个小的非零值,这意味着在训练过程中,接收到负输入的神经元仍然可以参与学习,只是贡献程度不如正输入大。但且慢,如果下一个训练输入 x=15,神经元岂不是被救活了吗?
原创
博文更新于 2025.11.15 ·
9222 阅读 ·
5 点赞 ·
0 评论 ·
17 收藏

交叉熵(Cross Entropy)及其应用实例

最近看大模型相关的论文和书籍,发现了宝藏,这里面全都是我感兴趣的单点,概率统计学,非线性,GPU 并行的切割方向,负反馈,矩阵,函数图像…当模型对某个类别的预测概率高于真实概率时,梯度为正,提示应该降低相应的 logit,当预测不足时,梯度为负,提示应该增加 logit。影响更大,两者偏离越大,损失越大,直观上看,交叉熵更重视出类拔萃者,而忽略了卑微者,这就是一种有意义的 “拔优”,涌现正基于这种非线性操作。在概率分布上下文,它度量 K 个概率分布的均匀性,越尖锐,事件越确定,值越小。完美承解决这个问题。
原创
博文更新于 2025.11.15 ·
14405 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

MPTCP 松弛调度,求可用而舍最优

在广域网,虽然带宽越来越高,但终端移动化,IoT 也在横向接入到每一个角落,一方面受能耗约束,计算资源却在向云中心集中,少量进入边缘计算节点,互联网越来越不对称,传输内容也在逐步改变,大吞吐让位于高体验,这需要一个非常稳定的时延,另一方面,受越来越多的严格可预测约束,稳定的时延比单纯低却抖动更吸引人,最后,受限于应用自限制,广域网上单纯传输大块数据,越来越既无必要,也不明智,更不道德。我这算法是应对三大运营商覆盖不重叠的区域,不至于没有信号的软件方案,应用保持 TCP 连接,不至于断线重连。
原创
博文更新于 2025.11.15 ·
9540 阅读 ·
35 点赞 ·
0 评论 ·
31 收藏

信息守恒下的涌现与 AI 传输质量观测

在做法上,我可能会用实际流量样本训练 DCN 本身,在它能为拥塞控制给出建议之前,实际的流量或人为注入的流量(例如 incast)最为输入,人工的,传统算法的或 SDN 的决策作为目标,都是该 AI DCN 的学习样本,该 AI DCN 就像一个神经网络本身一样收敛,涌现出应对任何流量模式的即时应对措施,在我看来这就算一种即时的 “在线推理”。不管怎样,信息守恒,只是难以暴露,依赖大模型的涌现能力,发现隐藏在流量本身的,靠人工以及传统算法无法发现的 “模式” 信息,才能给出更加有效的应对策略。
原创
博文更新于 2025.11.14 ·
14013 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

控制论与网络传输协议

总有些经理试图优化 AIMD,常见的包括线性减,乘性增,甚至直接弃用 AIMD,这种做法破坏了控制论的基本假设,这些优化专家有所不知,AIMD 并不是针对单独流起作用的,它是全局的,换句话说,AIMD 是整个广域网生态系统上的控制器,AIMD 正如同生态系统的 Lotka-Volterra 方程那般起作用,维持着系统的稳定。单体的恢复可能只是雪崩的开始而不是故障的结束。值得注意的是,不管是前馈系统,还是反馈系统,反馈都是滞后的,它永远滞后于系统即时的动态变化,这意味着前馈,反馈系统必然是震荡的。
原创
博文更新于 2025.11.08 ·
14934 阅读 ·
11 点赞 ·
0 评论 ·
19 收藏
加载更多