djph26741
码龄11年
求更新 关注
提问 私信
  • 博客:911,374
    911,374
    总访问量
  • 暂无
    原创
  • 77
    粉丝
  • 1
    关注
加入CSDN时间: 2014-11-09
博客简介:

djph26741的博客

查看详细资料
个人成就
  • 获得121次点赞
  • 内容获得0次评论
  • 获得1,249次收藏
  • 代码片获得705次分享
  • 博客总排名1,985,695名
创作历程
  • 123篇
    2019年
  • 544篇
    2018年
  • 726篇
    2017年
  • 133篇
    2016年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

43人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

ES批量索引写入时的ID自动生成算法

对bulk request的处理流程:1、遍历所有的request,对其做一些加工,主要包括:获取routing(如果mapping里有的话)、指定的timestamp(如果没有带timestamp会使用当前时间),如果没有指定id字段,在action.bulk.action.allow_id_generation配置为true的情况下,会自动生成一个base64UUID作为id字段...
转载
博文更新于 2019.09.27 ·
708 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

lucene DocValues——没有看懂

前言: 在Lucene4.x之后,出现一个重大的特性,就是索引支持DocValues,这对于广大的solr和elasticsearch用户,无疑来说是一个福音,这玩意的出现通过牺牲一定的磁盘空间带来的好处主要有两个:(1)节省内存(2)对排序,分组和一些聚合操作时能够大大提升性能下面来详细介绍下DocValue的原理和使用场景(一)什么是DocValues?...
转载
博文更新于 2019.09.27 ·
483 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

golang OOP面向对象

摘自:http://www.01happy.com/golang-oop/golang中并没有明确的面向对象的说法,实在要扯上的话,可以将struct比作其它语言中的class。类声明12345type Poem struct {Title stringAuthor string...
转载
博文更新于 2019.09.27 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Luke 5—— 可视化 Lucene 索引查看工具,可以查看ES的索引

Luke 5 发布,可视化 Lucene 索引查看工具oschina发布于2015年08月31日这是一个主要版本,该版本支持 Lucene 5.2.0。它支持 elasticsearch 1.6.0(Lucene的4.10.4)已解决的问题:#20增加支持重建索引并不会存储领域,不暴露位置的字段值。Pull Requests:#23 Elasticsearch 支持...
转载
博文更新于 2019.09.27 ·
679 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

异常检测概览——孤立森林 效果是最好的

用机器学习检测异常点击流本文内容是我学习ML时做的一个练手项目,描述应用机器学习的一般步骤。该项目的目标是从点击流数据中找出恶意用户的请求。点击流数据长下图这样子,包括请求时间、IP、平台等特征:该项目从开始做到阶段性完成,大致可分为两个阶段:算法选择和工程优化。算法选择阶段挑选合适的ML模型,尝试了神经网络、高斯分布、Isolation Forest等三个模型。由于...
转载
博文更新于 2019.09.27 ·
1241 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

转载-让PIP源使用国内镜像,提升下载速度和安装成功率

让PIP源使用国内镜像,提升下载速度和安装成功率。对于Python开发用户来讲,PIP安装软件包是家常便饭。但国外的源下载速度实在太慢,浪费时间。而且经常出现下载后安装出错问题。所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安装成功率。国内源:新版ubuntu要求使用https源,要注意。清华:https://pypi.tuna.tsinghua....
转载
博文更新于 2019.09.27 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

函数式编程之pipeline——很酷有没有

Pipelinepipeline 管道借鉴于Unix Shell的管道操作——把若干个命令串起来,前面命令的输出成为后面命令的输入,如此完成一个流式计算。(注:管道绝对是一个伟大的发明,他的设哲学就是KISS – 让每个功能就做一件事,并把这件事做到极致,软件或程序的拼装会变得更为简单和直观。这个设计理念影响非常深远,包括今天的Web Service,云计算,以及大数据的流式计算等等...
转载
博文更新于 2019.09.27 ·
1095 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

IDA 逆向工程 反汇编使用

IDA pro 7.0版本from:freebuf用到的工具有IDA pro 7.0 ,被反汇编的是百度云(BaiduNetdisk_5.6.1.2.exe)。首先,IDA pro的长相如下:共有(File , Edit , Jump , Search , View , Debugger , Options , Windows , Help)9个模块,还有下面的诸多...
转载
博文更新于 2019.09.27 ·
586 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

CNN autoencoder 先降维再使用kmeans进行图像聚类 是不是也可以降维以后进行iforest处理?...

import kerasfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers import Dense, Activation, Flattenfrom keras.layers import Conv2D, MaxPooling2D, UpSampli...
转载
博文更新于 2019.09.27 ·
674 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

使用GAN进行异常检测——可以进行网络流量的自学习哇,哥哥,人家是半监督,无监督的话,还是要VAE,SAE。...

实验了效果,下面的还是图像的异常检测居多。https://github.com/LeeDoYup/AnoGANhttps://github.com/tkwoo/anogan-keras看了下,本质上是半监督学习,一开始是有分类模型的。代码如下,生产模型和判别模型:### generator model definedef generator_model(): ...
转载
博文更新于 2019.09.27 ·
1157 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

SIMD指令集——一条指令操作多个数,SSE,AVX都是,例如:乘累加,Shuffle等

SIMD指令集from:https://zhuanlan.zhihu.com/p/31271788SIMD,即Single Instruction, Multiple Data,一条指令操作多个数据.是CPU基本指令集的扩展.主要用于提供fine grain parallelism,即小碎数据的并行操作.比如说图像处理,图像的数据常用的数据类型是RGB565, RGBA8...
转载
博文更新于 2019.09.27 ·
2003 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

Arachni web扫描工具

扫描工具-Arachnifrom:https://blog.csdn.net/zixuanfy/article/details/52818527./arachni_console #进入命令行模式./arachni_web #启用web服务,进入web操作模式【属于web 应用】http://lo...
转载
博文更新于 2019.09.27 ·
701 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GAN作用——在我做安全的看来,就是做数据拟合、数据增强

from:https://www.zhihu.com/question/56171002/answer/155777359GAN的作用,也就是为什么GAN会火了(有部分原因可能是因为Lecun的赞赏)。如果GAN只是用来生成一些像真是数据一样的数据的话,那不会有像现在这么火。更多的,或者对于机器学习研究员来说,看待的最关键一点应该是GAN可以用来 拟合数据分布 。什么叫拟合数据分布,...
转载
博文更新于 2019.09.27 ·
656 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SENet(Squeeze-and-Excitation Networks)算法笔记---通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大...

Momenta详解ImageNet 2017夺冠架构SENet转自机器之心专栏作者:胡杰本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏。除此之外,Momenta 还受邀在 CVPR 2017 的 ImageNet Workshop 中发表演讲,介绍 Momenta 在...
转载
博文更新于 2019.09.27 ·
1008 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

go语言笔记——go环境变量goroot是安装了路径和gopath是三方包路径

Go 环境变量Go 开发环境依赖于一些操作系统环境变量,你最好在安装 Go 之间就已经设置好他们。如果你使用的是 Windows 的话,你完全不用进行手动设置,Go 将被默认安装在目录c:/go下。这里列举几个最为重要的环境变量:$GOROOT表示 Go 在你的电脑上的安装位置,它的值一般都是$HOME/go,当然,你也可以安装在别的地方。$GOARCH表示目标...
转载
博文更新于 2019.09.27 ·
275 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sar 找出系统瓶颈的利器 目前Linux上最为全面的系统性能分析工具之一 直接 sar -dur 1 30 即可看内存 CPU和IO占用...

12. sar 找出系统瓶颈的利器sar是System Activity Reporter(系统活动情况报告)的缩写。sar工具将对系统当前的状态进行取样,然后通过计算数据和比例来表达系统的当前运行状态。它的特点是可以 连续对系统取样,获得大量的取样数据;取样数据和分析的结果都可以存入文件,所需的负载很小。sar是目前Linux上最为全面的系统性能分析工具之一, 可以从14个大方面对...
转载
博文更新于 2019.09.27 ·
163 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ES忽略TF-IDF评分——使用constant_score

Ignoring TF/IDFSometimes we just don’t care about TF/IDF.All we want to know is that a certain word appears in a field. Perhaps we are searching for a vacation home and we want to ...
转载
博文更新于 2019.09.27 ·
610 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

shingling算法——提取特征,m个hash函数做指纹计算,针对特征hash后变成m维向量,最后利用union-find算法计算相似性...

shingling算法用于计算两个文档的相似度,例如,用于网页去重。维基百科对w-shingling的定义如下:In natural language processing a w-shingling is a set of unique "shingles"—contiguous subsequences of tokens in a document —that can be u...
转载
博文更新于 2019.09.27 ·
295 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

日志和告警数据挖掘经验谈——利用日志相似度进行聚类,利用时间进行关联分析...

摘自:http://www.36dsj.com/archives/75208最近参与了了一个日志和告警的数据挖掘项目,里面用到的一些思路在这里和大家做一个分享。项目的需求是收集的客户系统一个月300G左右的的日志和告警数据做一个整理,主要是归类(Grouping)和关联(Correlation),从而得到告警和日志的一些统计关系,这些统计结果可以给一线支持人员参考。得到的数据...
转载
博文更新于 2019.09.27 ·
860 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

levelDB, TokuDB, BDB等kv存储引擎性能对比——wiredtree, wiredLSM,LMDB读写很强啊

在:http://www.lmdb.tech/bench/inmem/2. Small Data SetUsing the laptop we generate a database with 20 million records. The records have 16 byte keys and 100 byte values so the resulting databas...
转载
博文更新于 2019.09.27 ·
748 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多