daxiang12092205
码龄15年
求更新 关注
提问 私信
  • 博客:1,289,705
    社区:1,404
    问答:1,707
    1,292,816
    总访问量
  • 128
    原创
  • 5,427
    排名
  • 101
    粉丝
  • 11
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2011-03-19

个人简介:路漫漫其修远兮,吾将上下而求索

博客简介:

daxiang的专栏

博客描述:
生命,是无法定制和预先设计的。只要生命是健康又向上的,就是美的。
查看详细资料
个人成就
  • 获得276次点赞
  • 内容获得39次评论
  • 获得469次收藏
  • 代码片获得184次分享
  • 原力等级
    原力等级
    3
    原力分
    210
    本月获得
    18
创作历程
  • 22篇
    2025年
  • 2篇
    2018年
  • 84篇
    2016年
  • 14篇
    2015年
  • 86篇
    2014年
  • 30篇
    2013年
  • 16篇
    2012年
成就勋章
TA的专栏
  • 算法
    3篇
  • 大模型术语
    2篇
  • 安装部署
    2篇
  • 常用软件
    3篇
  • C/C++
    1篇
  • C#
    7篇
  • SQL Server
    3篇
  • oracle
    34篇
  • ASP.NET
    1篇
  • 单片机
    1篇
  • Eclipse
    6篇
  • J2EE
    66篇
  • 随笔
    21篇
  • 前端
    45篇
  • 请求
    1篇
  • jsp
    1篇
  • 数据分析
    5篇
  • mysql
    6篇
  • 分布式
    31篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 运维
    网络
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

33人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

记一次前端请求报错:Content-Length can‘t be present with Transfer-Encoding,+Cursor使用教训

摘要:前端调用后端接口时出现Content-Length与Transfer-Encoding冲突错误,原因是HTTP/1.1协议规定这两个响应头不能共存。解决方案是修改Python后端代码,过滤掉传输相关的响应头(Content-Length和Transfer-Encoding等)。该问题启示我们:AI工具(如Cursor)虽强大,但有效使用的前提是开发者对问题有正确研判和独立思考能力,才能引导AI精准解决问题。调试过程也体现了前后端联调时需全面考虑各环节可能问题。
原创
博文更新于 2025.12.14 ·
288 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

spring boot服务循环依赖问题详细分析与解决方案

本文分析了Spring循环依赖与栈溢出问题的关系。当JVM栈空间设置过小(228KB)时,Spring处理循环依赖过程中产生的深层方法调用链(涉及类加载、反射等递归操作)容易触发StackOverflowError。虽然循环依赖本身不会直接导致栈溢出,但它会加深调用链深度,在有限栈空间下更容易暴露问题。解决方案是增加栈空间至1MB,提供足够缓冲。根本原因在于栈空间不足,而非循环依赖本身,后者只是加剧了调用深度。建议合理设置JVM参数,避免过小的栈空间配置。
原创
博文更新于 2025.12.14 ·
607 阅读 ·
16 点赞 ·
1 评论 ·
29 收藏

Spring boot服务启动报错 java.lang.StackOverflowError 原因分析

摘要:生产环境SpringBoot服务因java.lang.StackOverflowError启动失败,而本地正常。直接原因是JVM栈空间过小(228KB),根本在于类加载和反射需要深层调用链。循环依赖作为触发因素加深调用链,导致栈溢出。研发环境正常可能因默认栈空间较大(1MB)。解决方案推荐使用@Lazy注解打破循环依赖(本质方案),或临时增加栈空间。
原创
博文更新于 2025.12.14 ·
419 阅读 ·
3 点赞 ·
1 评论 ·
9 收藏

k8s高频面试题汇总

本文介绍了 50道k8s高频面试题,涵盖: 基础概念、架构组成、核心组件、网络服务等内容
原创
博文更新于 2025.10.26 ·
639 阅读 ·
5 点赞 ·
0 评论 ·
16 收藏

零基础理解k8s

Kubernetes(K8s)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。本指南介绍了K8s的核心概念、快速实践方法、适用场景和系统架构。主要内容包括:1)K8s的基本特性和优势,如自动化部署、服务发现和故障自愈;2)通过在线环境快速部署应用并进行扩缩容、滚动更新等操作;3)典型应用场景如微服务、云原生和CI/CD;4)集群架构及组件功能,包括Master节点的API Server、etcd和Worker节点的kubelet等。帮助用户快速掌握K8s的核心功能与实践方法。
原创
博文更新于 2025.10.26 ·
1026 阅读 ·
13 点赞 ·
0 评论 ·
22 收藏

《成事的时间管理》读后感

《成事的时间管理》读后感摘要:面对多项目混乱、拖延症和生活失衡的困扰,作者通过书中方法论重构时间管理:目标管理强调量化指标和长期规划;时间策略聚焦要事并合理授权;四级计划体系实现任务分层;效率技巧包含批量处理、减少决策损耗;五维平衡确保工作、家庭与健康同步发展。实践方案包括制定三年目标、四象限分类、弹性日程和固定作息。核心启示:时间管理不是挤时间,而是让时间流向真正重要的事。(150字)
原创
博文更新于 2025.10.25 ·
553 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

黄金与多种指数基金资产收益率对比分析

本报告对比了6种证券资产10年(或存续期)的年化收益率,采用红利再投资并扣除相关费用。结果显示: 人民币黄金(AU9999)表现最佳,11年年化收益率7.04%,总收益111.4%; 富国中证红利增强A(100032)次之,年化6.26%;债券基金和沪深300ETF收益稳健,年化约3-4%; 医药类ETF亏损严重:易方达沪深300医药卫生ETF(512010)11年年化-9.46%,鹏华中药ETF(159647)4年年化-9.65%。 关键发现:黄金作为避险资产长期回报突出
原创
博文更新于 2025.10.18 ·
1112 阅读 ·
13 点赞 ·
0 评论 ·
21 收藏

白话大模型评估:文本嵌入与文本生成模型评估方法详解

本文介绍了大语言模型的两类核心评估方法:文本嵌入模型和文本生成模型。对于文本嵌入模型,重点阐述了准确率、精确率、召回率和F1分数等核心指标及其计算方法,并提供了基于LCQMC数据集的评估代码示例。文本生成模型评估部分则详细解析了BLEU、ROUGE和困惑度等指标的特点与适用场景,同时给出了完整的评估流程代码。文章通过具体示例展示了如何从数据加载到指标计算的全过程,为读者提供了实用的模型评估参考框架。
原创
博文更新于 2025.10.07 ·
1161 阅读 ·
24 点赞 ·
0 评论 ·
22 收藏

leetcode 567. 字符串的排列

本文介绍了LeetCode题目"字符串的排列"的两种解法。题目要求在字符串s2中查找是否存在与s1字符组成相同的连续子串。暴力枚举法直观但时间复杂度高(O(m*n)),而滑动窗口+动态计数法通过维护固定窗口和实时更新字符计数,将复杂度优化至O(n)。后者使用数组代替哈希表存储计数,显著提升了效率,是更优的解决方案。建议优先掌握滑动窗口方法,其减少重复计算的思想适用于类似字符串匹配问题。
原创
博文更新于 2025.10.06 ·
304 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

leetcode 560. 和为 K 的子数组

本文介绍了LeetCode题目「和为K的子数组」的两种解法。题目要求统计数组中连续子数组和等于k的个数。第一种解法采用枚举+双指针法,时间复杂度O(n²),通过遍历所有可能的子数组进行求和判断。第二种解法利用前缀和+哈希表优化,时间复杂度O(n),通过维护前缀和字典快速查找满足条件的子数组,其中哈希表记录各前缀和出现的次数,遍历时检查left-k是否存在即可累加结果。两种方法分别适用于不同场景,后者显著提升了效率。
原创
博文更新于 2025.10.04 ·
335 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

java计算int数组所有元素和的两种方式

Java计算数组元素和的两种方法性能对比:传统for循环直接操作基本类型,避免装箱和对象创建开销,JVM优化友好,性能更优;Stream API涉及装箱和方法调用,性能略逊但代码简洁。小数组时for循环快2-5倍,大数组差距缩小。建议性能敏感场景用for循环,代码简洁或并行计算需求可考虑Stream。实际开发应根据需求权衡选择。
原创
博文更新于 2025.10.04 ·
284 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

leetcode 88. 合并两个有序数组

题目:合并两个有序数组nums1和nums2,结果存储在nums1中。解法:使用双指针和临时数组,空间复杂度为O(m+n)
原创
博文更新于 2025.10.04 ·
224 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

零基础理解LangChain框架

LangChain是一个简化大模型应用开发的框架,支持聊天机器人、智能问答、翻译助手等场景开发。它通过模块化架构,提供模型管理、任务链、记忆存储、代理工具、信息检索和提示词模板等功能。
原创
博文更新于 2025.10.03 ·
1044 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

算法时间复杂度为 log(n),log(n) 是什么意思

摘要:O(log n)表示算法执行时间与输入规模n的对数成正比,常见于分治策略或迭代缩减问题规模的算法,如二分查找和欧几里得算法。其效率远优于线性复杂度,当n=10^6时仅需约20次操作。
原创
博文更新于 2025.10.02 ·
1807 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

一文看懂 PyTorch 训练模型时使用 loss.backward() 是什么

PyTorch中的loss.backward()自动执行反向传播,计算每个参数对损失值的梯度。它通过动态计算图记录前向传播过程,并按链式法则反向求导。核心功能包括:1)自动计算梯度,无需手动推导;2)支持梯度累积;3)可保留计算图供多次反向传播。使用时需先进行前向传播计算损失,再调用backward()生成梯度,最后优化器根据梯度更新参数。该机制极大简化了深度学习模型的训练过程。
原创
博文更新于 2025.08.30 ·
444 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

一文看懂 SGD 随机梯度下降优化器

SGD随机梯度下降优化器是一种"摸着石头过河"的优化方法。它每次只随机选取一个或少量样本来计算梯度并更新参数,相比传统批量梯度下降(BGD)计算更快、内存占用更小,适合大数据场景。但SGD也存在噪声大、收敛慢等缺点,实际应用中常结合小批量采样、动量法等技巧来提升稳定性。SGD通过快速迭代的方式高效训练模型,是深度学习的基石优化器之一。
原创
博文更新于 2025.08.30 ·
595 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

一文看懂log函数在大模型中的作用

Log函数(对数函数)是数学中的逆运算工具,能将指数问题转化为简单运算。核心特性包括:将乘法变加法、压缩数值范围、解决指数方程。在大模型训练中,Log函数通过交叉熵损失函数和Softmax激活函数优化计算,避免数值下溢,提升训练稳定性。总结来说,Log函数是处理复杂运算的"数学转换器",让大数计算和模型训练更高效可控。
原创
博文更新于 2025.08.30 ·
1012 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

一文看懂 CrossEntropyLoss 多分类交叉熵损失函数

交叉熵损失函数核心思想是:模型对正确类别的预测概率越高,损失值越小。计算公式为对正确类别的预测概率取负对数,促使模型将正确类别的概率最大化。通常与Softmax函数配合使用,将原始输出转换为概率分布。
原创
博文更新于 2025.08.30 ·
559 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

将 Logits 得分转换为概率,如何计算

本文展示了如何将模型输出的Logits值[3.2,1.5,-0.8]通过Softmax函数转换为概率分布。计算过程分为三步:首先计算各Logit的指数值(24.5325、4.4817、0.4493),然后求指数和作为分母(29.4635),最后将各指数值除以总和得到最终概率。转换结果为:猫83.26%、狗15.21%、鸟1.53%,总和为100%。该过程将原始得分转化为直观的概率形式,便于理解模型预测结果。
原创
博文更新于 2025.08.30 ·
277 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

大模型训练中的 logits 是什么

摘要:Logits是大模型输出的原始得分,直接反映模型对不同类别的倾向性,但尚未转换为概率。它是模型最后一层神经网络的原始输出,数值越大表示模型越倾向该结果。
原创
博文更新于 2025.08.30 ·
588 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏
加载更多