chaomoon1
码龄3年
求更新 关注
提问 私信
  • 博客:11,254
    问答:49
    11,303
    总访问量
  • 6
    原创
  • 102
    粉丝
  • 10
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2023-02-22
博客简介:

chaomoon1的博客

查看详细资料
个人成就
  • 获得171次点赞
  • 内容获得2次评论
  • 获得150次收藏
  • 代码片获得964次分享
  • 博客总排名1,521,679名
创作历程
  • 6篇
    2024年
成就勋章
TA的专栏
  • pytorch
    2篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • Python
    pythonscikit-learnscrapybeautifulsoupnumpyscipypandasmatplotlibipython
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

带有注意力机制的seq2seq中英文翻译模型

在这个项目中,基于注意力机制的Seq2Seq神经网络,将英文翻译成中文。数据集eng-cmn.txt样本如下,由两部分组成,前部分为英文,后部分为中文,中间用Tab分割。英文分词一般采用空格,中文分词这里使用jieba。Use this. 请用这个。Who died?谁死了?Am I dead?我死了吗?Answer me. 回答我。Birds fly. 鳥類飛行。Call home!打电话回家!Calm down. 冷静点。
原创
博文更新于 2024.11.08 ·
2565 阅读 ·
44 点赞 ·
0 评论 ·
56 收藏

基于transformer的中英文互译

大概长这样。
原创
博文更新于 2024.11.08 ·
785 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

利用LSTM预测股票(pytorch)

使用tushare模块。四、定义LSTM模型。
原创
博文更新于 2024.10.30 ·
1591 阅读 ·
2 点赞 ·
1 评论 ·
10 收藏

树叶分类竞赛——kaggle

本文利用手搓的resnet18对树叶图片进行分类课程是李沐大神的动手学深度学习。
原创
博文更新于 2024.10.29 ·
1829 阅读 ·
27 点赞 ·
1 评论 ·
16 收藏

67 自注意力【动手学深度学习v2】pytorch版(含练习)

自注意力的构造看起来和MLP很像,但是自注意力可以通过不学习参数(也可以学习)来通过query有意图地筛选那些对我更有用的key和value来得到对应的输出(通过softmax实现),而MLP是需要学习的,准确度是个随机,这得看模型的好坏了,自注意力约等于让机器学习那些更为有用的信息。公式用cos和sin的好处。堆叠基于位置编码的自注意力层,即通过多层自注意力模块叠加,利用位置编码的顺序信息,逐层增强对序列数据的理解,使得模型能够对序列中的每个元素进行更深层次的表示,捕捉到丰富的上下文和顺序依赖关系。
原创
博文更新于 2024.10.27 ·
2078 阅读 ·
56 点赞 ·
0 评论 ·
25 收藏

为什么gru的公式不能写成这样?

发布问题 2024.10.25 ·
0 回答

加州2020年房子预测--kaggle

本文章利用简单的MLP对加州房价进行预处理和预测课程是李沐大神的动手学深度学习(pytorch)利用MLP对加州房价的预测。
原创
博文更新于 2024.10.22 ·
2395 阅读 ·
24 点赞 ·
0 评论 ·
33 收藏

pytorch报错问题

发布问题 2024.10.06 ·
2 回答