日暮途远.
码龄8年
求更新 关注
提问 私信
  • 博客:201,291
    动态:27
    201,318
    总访问量
  • 67
    原创
  • 244
    粉丝
  • 62
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2018-03-20
博客简介:

baidu_41871794的博客

查看详细资料
个人成就
  • 获得381次点赞
  • 内容获得72次评论
  • 获得2,309次收藏
  • 代码片获得810次分享
  • 博客总排名721,935名
创作历程
  • 3篇
    2021年
  • 53篇
    2020年
  • 3篇
    2019年
  • 9篇
    2018年
成就勋章
TA的专栏
  • 强化学习
    2篇
  • python爬虫
    5篇
  • 学习资料
    7篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 大数据
    mysql
  • 后端
    spring
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

强化学习基础理论

知识结构定义强化学习(Reinforcement learning),与监督学习,无监督学习是类似的,是一种统称的学习方式。它主要利用智能体与环境进行交互,从而学习到能获得良好结果的策略。与有监督学习不同,强化学习的动作并没有明确的标注信息,只有来自环境的反馈的奖励信息,它通常具有一定的滞后性,用于反映动作的“好与坏”。参考资料:https://zh.wikipedia.org/wiki/%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0基础理论基本概念4
原创
博文更新于 2021.10.16 ·
4167 阅读 ·
1 点赞 ·
0 评论 ·
24 收藏

Tensorflow2.0基础

1.数据类型TensorFlow 中的基本数据类型,包含数值类型、字符串类型和布尔类型。1.1数值类型标量(Scalar) ,单个的实数,如 1.2, 3.4 等,维度(Dimension)数为 0,shape 为[]。;# python 语言方式创建标量a = 1.2 # TF 方式创建标量aa = tf.constant(1.2)type(a), type(aa), tf.is_tensor(aa)(float, tensorflow.python.framework.ops.E
原创
博文更新于 2021.10.16 ·
484 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pytorch强化学习算法实现

Policy Gradient算法实现Policy Gradient算法的思想在另一篇博客中有介绍了,下面是算法的具体实现。Policy网络两个线性层,中间使用Relu激活函数连接,最后连接softmax输出每个动作的概率。class PolicyNet(nn.Module): def __init__(self,n_states_num,n_actions_num,hidden_size): super(PolicyNet, self).__init__()
原创
博文更新于 2021.10.16 ·
2374 阅读 ·
0 点赞 ·
1 评论 ·
22 收藏

创新实训(43)——ElasticSearch中默认分词器的设置

前言之前实现了句子的查询,并且将句子进行查询之前,已经分词并且去除了停用词,剩下的很多停用词都是可能与句子的意思之间相关的所以并没有被去掉,这样的句子放入ElasticSearch进行查询时,会被切分,然后查询结果中会有很多不必要出现的停用词,作为关键词出现,初步分数是分词器的问题。在使用 elasticsearch 进行搜索的时候,经常会发现一篇和搜索关键字完全不匹配的文章排在最前面。它可能就被 ik_max_word 分词后,刚好就有类似 “的” 这样的无意义词,导致造成一篇含有很多无意义词的文章得
原创
博文更新于 2020.06.27 ·
1273 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

创新实训(27)——有关推荐文章列表的后端接口实现

前言这部分其实很简单,调用之前写好的方法,返回参数就好了,最主要的还是和前端的同学进行参数的协调,已经保重接口的不出错获取热榜列表,这个列表是根据博客系统所有文章的流行度和新鲜度给出的,相关数据被物化在了redis中 /** * * 获取默认的文章列表,这个列表是根据博客系统所有文章的流行度和新鲜度给出的 * @param page * @param size * @return */ @PermitAll @Reque
原创
博文更新于 2020.07.01 ·
356 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训——工作总结

博客内容工作内容博客连接项目分工讨论及环境搭建初步讨论,进行小组分工 &&开发环境搭建和相关开发工具的介绍负责模块的初步设计数据库设计&&推荐系统设计&&数据清洗流程设计博客文章的数据清洗TextRank抽取式摘要生成&&尝试基于seq2seq的生产式摘要(效果很差)&&提取文章的纯文本内容&&文章标签与分类的提取推荐系统实现之基于流行度和新鲜度的推荐(热门榜单)
原创
博文更新于 2020.07.01 ·
659 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

创新实训(30)——有关管理员端博客和文章信息统计的接口(续)

前言今天将昨天没有完成的有关管理员端博客和文章信息的统计接口补齐获取文章最近七天的点赞数量 降序排序 /** * 获取最近七天 给文章点赞最多的用户 及点赞数量 降序排列 * @param page * @param size * @return */ @RequestMapping(value = "/getUserLikingCountRecently", method = RequestMethod.GET, produces =
原创
博文更新于 2020.06.30 ·
242 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训(29)——有关管理员端博客和文章信息统计的接口

前言系统的管理员端需要对系统中一些情况,进行数据的分析,所以需要设计一些接口,为前端绘制统计图做准备。这部分的内容,主要没有什么逻辑上的难度,只是需要设计sql语句,使用sql本身的聚合功能,实现对于数据的统计,然后将数据返回前台即可被浏览文章最多的博主 以及文章浏览的数量 降序排序 /** *被浏览文章最多的博主 以及文章浏览的数量 降序排序 * @param page * @param size * @return */ @RequestM
原创
博文更新于 2020.06.30 ·
277 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训(23)——在MacOS下搭建有关elasticsearch的环境

前言由于我们要使用elasticsearch实现文章的检索,所以提前安装一些有关elasticsearch的环境使用mac下的包管理工具HomeBrew搭建相关环境Install ElasticSearchbrew install elasticsearch // 安装brew info elasticsearch // 查看信息brew services start elasticsearch // 启动安装完成后访问localhost:9200, 可以看到如下结果:Inst
原创
博文更新于 2020.06.30 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训(1)——小组成员初步讨论,进行小组分工,明确项目范围项目范围

小组讨论1.小组成员通过qq群语音已经qq群分享屏幕的方式进行了几天的讨论:明确了项目的范围,项目需要完成的模块以及可能会使用到的技术细节。然后通过对每个人对相关技术的掌握,分配相应的工作。通过技术细节可以分析项目的可行性以及项目大概的工作量,好规划项目的时间,保证项目能按质量完成。2.经过详细讨论,最终我负责:(1)对通过rss抓取获的到的内容进行进一步的数据清洗(包括博客主要内容的提取,博客标签的提取,通过标签进行博客的分类,以及相关博客摘要的生成),设计数据清洗的一整套流程,保证数据从rss抓取
原创
博文更新于 2020.06.30 ·
2586 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

创新实训(35)——SpringBoot中使用 Spring Cache 集成 Redis进行缓存,提高响应速度

前言由于之前写的所有后端都没有进行过缓存操作,在结合前端已经app调试时,发现本地请求的响应都会很慢,所以现在结合redis对后端的请求进行一次缓存,提高执行的效率关于SpringCache的学习(1)SpringCache简介Spring Cache是Spring框架提供的对缓存使用的抽象类,支持多种缓存,比如Redis、EHCache等,集成很方便。同时提供了多种注解来简化缓存的使用,可对方法进行缓存。(2)关于SpringCache 注解的简单介绍@Cacheable:标记在一个方法上
原创
博文更新于 2020.06.29 ·
594 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

创新实训(49)——后端sql优化,提升sql运行速度

前言在使用网页时,发现有的板块刷新比较慢,体验很不好,之前也优化过多次代码的逻辑以及使用spring cache提高响应速度,今天从sql的角度优化一下代码的执行速度。select * from 的问题项目中有很多操作是获取文章列表,而之前获取文章列表时常常使用select * from article 后面接着代码逻辑,但是文章列表显示的内容有限,根本不可能显示所以内容,所以优化了相关方面的sql,将select * from article改成了查询具体的字段,这样不仅提升了sql的效率,还提升了
原创
博文更新于 2020.06.29 ·
409 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

创新实训(48)——后端项目bug修复

前言使用做好的网页,修复一下出现的bug使用spring cache +redis时出现的问题他成功从缓存中读取到了数据,但是好像时缺少含有全部参数的构造函数的问题,缺少参数的构造函数在这个上面没有用处,所以就在每一个类上加上了lombok全参数的构造函数的注解@AllArgsConstructor并且害怕序列化出错,加上了implements Serializable。计算热榜评分时出错发现redis报错ERR value is not a valid float。说明存入的类型不是fl
原创
博文更新于 2020.06.28 ·
408 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训(47)——在后端项目中使用java API调用ElasticSearch的Suggester实现搜索提示

前言现在已经建好了相应的索引,现在要使用相应的api实现搜索提示功能。引入依赖<dependency> <groupId>org.codelibs.fess</groupId> <artifactId>fess-suggest</artifactId> <version>5.6.0</version> </dependency>使用CompletionSuggest
原创
博文更新于 2020.06.28 ·
926 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

创新实训(46)——基于ElasticSearch的Completion Suggest实现搜索提示

前言现在来重新建立索引,然后实现搜索提示。建立索引并重新抽取数据PUT /articles2{ "mappings" : { "doc" : { "properties" : { "content" : { "type" : "text", "fields" : { "suggest" : { "type" : "completion",
原创
博文更新于 2020.06.27 ·
525 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

创新实训(45)——使用ElasticSearch的Suggest实现搜索提示的学习

前言昨天实现了句子的搜索,并且简单的更换了分词器,优化一下查询的结果,今天准备学习一下搜索提示的实现,并且设计一下如何使用java api实现搜索提示。Suggest的学习在查看官方文档之后,发现ElasticSearch的Suggest总共有四种类型文档链接:http://doc.codingdict.com/elasticsearch/123/Term SuggesterPhrase SuggesterCompletion SuggesterContext Suggester然后
原创
博文更新于 2020.06.27 ·
1367 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

创新实训(44)——相关接口的补充

前言完善了一个与管理员有关的接口以及用户画像的接口。管理员接口:用户统计信息的获取现在只有获取用户性别的数据,之后还可以添加别的,用label区分Controller层: /** * 获取所有用户统计信息 * @param label * @return */ @RequestMapping(value = "/statistics/{label}", method = RequestMethod.GET, produces = "appl
原创
博文更新于 2020.06.26 ·
208 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

创新实训(42)——ElasticSearch检索的优化

前言上个星期,使用ElasticSearch的Java API实现了ElasticSearch的连接已经简单的检索,但是那个检索有着很大的问题,就是比如准确匹配到单词或句子(单词或句子必须在搜索结果中连续的出现才行),如果搜索的内容很长或者用标点符号分割的话,就无法给出搜索结果了。QueryBuilder的选择参考文章:https://www.jianshu.com/p/3afae4105797https://www.cnblogs.com/wenbronk/p/6432990.html下面
原创
博文更新于 2020.06.26 ·
454 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多