鱼月半
码龄10年
求更新 关注
提问 私信
  • 博客:611,999
    社区:325
    问答:2,038
    动态:7,213
    621,575
    总访问量
  • 164
    原创
  • 20,743
    粉丝
  • 200
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2015-10-06

个人简介:乏善可陈

博客简介:

baidu_31788709的博客

查看详细资料
个人成就
  • 领域专家: C/C++技术领域
  • 获得432次点赞
  • 内容获得181次评论
  • 获得2,435次收藏
  • 代码片获得2,286次分享
  • 博客总排名17,952名
  • 原力等级
    原力等级
    7
    原力分
    4,689
    本月获得
    14
创作历程
  • 2篇
    2025年
  • 3篇
    2024年
  • 17篇
    2023年
  • 42篇
    2022年
  • 35篇
    2021年
  • 23篇
    2020年
  • 42篇
    2019年
成就勋章
TA的专栏
  • linux
    6篇
  • 麒麟linux
    11篇
  • nvidia
    1篇
  • python
    3篇
  • osg
    21篇
  • C++
    30篇
  • 笔记
    7篇
  • 软件使用
    2篇
  • 数据库
    1篇
  • jsp
    13篇
  • 爱奇异
    1篇
  • eclipse
    10篇
  • bootstrap
    4篇
  • js
    5篇
  • java
    3篇
  • 路由器
    2篇
  • 通信
    12篇
  • 编译库文件
    3篇
  • springboot
    5篇
  • tomcat
    2篇
  • websocket
    1篇
  • qmake
    2篇
  • VS编译
    3篇
  • Echart
    1篇
  • 网管
    1篇
  • 服务器
    1篇
  • QCustomplot
    1篇
  • 琐碎
    1篇
  • 空间参考系
    2篇
  • 示波器
    1篇
  • 外部库
    1篇
  • CUDA
    2篇
  • shiro
    1篇
  • 对抗样本
    1篇
  • 深度学习
    1篇
  • 防火墙
    3篇
  • 微信小程序
    1篇
  • windows
    1篇
  • GNU
    1篇
  • 测控知识
    1篇
  • 光传输设备
    2篇
  • 交换机
    1篇
  • 数据结构
    2篇
  • php
    1篇
  • wampserver
    1篇
  • mysql
    1篇
  • sqlite
    1篇
  • 龙芯开发
    20篇
  • ubuntu
    21篇
  • QT
    64篇
  • centOS
    2篇

TA关注的专栏 10

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 3

兴趣领域 设置
  • 运维
    网络
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

华为2288H V5服务器安装openEuler系统及可视化界面注意点

1. 华为的欧拉系统是开源系统,在欧拉官网就能下载,众所周知,安装系统,需要匹配服务器所使用的CPU架构,我要重装的这台服务器,CPU型号为Intel r Xeon 4214服务器芯片,其架构为x86架构,因此选择x86对应的系统版本即可。3. 如果服务器允许连接互联网,在系统安装时,可以连接网线,并在网络连接中打开相应网口的网络连接,以免在系统安装完成后,通过命令行配置网络,要麻烦一些。因为操作系统默认是没有可视化界面的,只有命令行界面。
原创
博文更新于 2025.09.08 ·
608 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基于3A4000及CentOS的银河麒麟V10离线源码编译安装VLC

银河麒麟源码安装VLC及FFMPEG的提醒点
原创
博文更新于 2025.04.15 ·
1082 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

VLC3.0.x及ffmpeg-4.4依赖包

发布资源 2025.04.12 ·
zip

NVIDIA Visual Profiler启动失败报错

在银河麒麟V10安装完NVIDIA后,想着试着运行一下NVIDIA Visual Profiler,发现报错,如下图。照着提示翻阅日志文件。看见其中写着这个意思很明显了,就是这个软件是依托javaSE 1.7运行的,所以得想法子安装javaSE 1.7才行,这个版本比较老了,对应的jdk版本是jdk 7,而现在电脑中的jdk版本是11,因此需要将两个版本的jdk并存才行。
原创
博文更新于 2024.06.30 ·
752 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

从tensorflow导入EarlyStopping能运行但是一直提示未解析

后来发现是因为tensorflow的版本已经升级到2.16,然而ubuntu下的pycharm社区版的space插件,只能更新到241.15989.9版本,这个版本发布的时候,tensorflow还在2.15版本,因此,对于2.16版本做的一些更改,他无法正确反应。后来发现问题的关键在与tensorflow和Space插件的版本匹配上。Space是一个用于代码审查的插件,简单说就是可以提示你的代码是否有问题。但是运行是可以运行的,虽然可以运行,但是一直红色波浪线,还是有强迫症的不爽,所以想着法子给他消掉。
原创
博文更新于 2024.05.29 ·
2022 阅读 ·
2 点赞 ·
3 评论 ·
0 收藏

移植动态库到新的系统环境下的一个小提醒

如果库文件是动态库,只复制粘贴是不行的,还需要将动态库放入共享库的缓存中。等一系列的动态库,复制到新的一台linux设备中,并放在。
原创
博文更新于 2024.02.21 ·
369 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

linux源码编译升级安装openssl3.0.1导致系统启动失败的问题解决

看到文件夹里面的内容,基本上原因已经清晰了,大概率是因为这个openssl文件夹中的bin,include,lib64这几个核心的文件夹没写入环境变量的,导致的里面的执行文件、库文件、头文件,都找不到导致的。前两天在安装curl的时候,提示openssl版本太老了,原有的版本是openssl1.0的版本,需要将其升级到openssl3的版本。不慌,源码编译本身就容易走钢丝,把系统搞崩溃那已经是家常便饭,所以对于初学者来说,建议在虚拟机上开始入手。另外,当时安装之前,如果没记错,应该是还执行了。
原创
博文更新于 2023.12.29 ·
1727 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

RTlinux3.2+linux2.4.23编程:insmod报错Couldn‘t find the kernel version the module was compiled for Linux

redhat9+RTlinux3.2+linux2.4.23的环境。redhat9原linux内核为liniux2.4.20-8。环境搭建完毕后,自己手写一个c文件进行尝试,如下。经排查,只需要贼test.c中增加头文件。另外,对应的Makefile如下。编写test.c文件内容。最近在做实验,采用了。
原创
博文更新于 2023.11.08 ·
552 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用结构体指针作为参数赋值传递时的注意点

在函数传参过程中,可能会遇到传递的参数为结构体的指针的情况。这个时候再给结构体赋值时,需要注意几点。将结构体指针的每一个键所对应的指针分别赋值。
原创
博文更新于 2023.10.02 ·
1326 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

FileZilla-3.58.0及依赖库源码

发布资源 2023.09.04 ·
zip

3A4000架构银河麒麟V10编译安装filezilla

1. 动态库的搜索目录需要添加`/usr/local/lib`。2. configure的配置项记得添加`/usr/local/lib/pkgconfig`。3. 记得源码编译安装完一个库后,尤其是动态库的话,记得执行一次`ldconfig`以写入环境变量。4. 源代码编译的依赖问题的解决,可多看看该库文件源代码下的说明文件。
原创
博文更新于 2023.09.04 ·
2762 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

银河麒麟中vsftpd匿名用户相关配置常见问题及解决方法

银河麒麟系统中通常自带vsftpd,可以通过配置vsftpd,实现在本机中搭建ftp服务器,方便文件管理使用。并且很多时候确实因为实际需要,需要配置为允许匿名用户登录并操作。但是vsfpd如果配置不好,就经常会出现很多问题,比如无法新建文件夹,文件夹无权限重命名或者删除,无法从ftp下载文件到本地等。因此,针对一些常见的问题,提出一些解决方案。
原创
博文更新于 2023.07.12 ·
2477 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

使用pycharm入门python的一些注意点

今儿在帮别人跑一段python代码,实际上我对python并不熟悉,只能边熟悉边尝试。选择了pycharm这个工具。
原创
博文更新于 2023.06.08 ·
1534 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

粉丝满一万纪念

发布动态 2023.06.01

《高等工程数学》常用基础知识梳理

(4) 商法则:如果函数y=f(x)和g(x)在点x处可导,且g(x)不为0,则它们的商也可导,且(y/g)’=(f’(x)g(x)-f(x)g’(x))/[g(x)](2) 和差法则:如果函数y=f(x)和g(x)在点x处可导,则它们的和、差也可导,且(y+g)’=f’(x)+g’(x),(y-g)’=f’(x)-g’(x)(3) 积法则:如果函数y=f(x)和g(x)在点x处可导,则它们的积也可导,且(y*g)’=f’(x)*g(x)+f(x)*g’(x)y=cos x,导数为y’=-sin x;
原创
博文更新于 2023.04.17 ·
1874 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

《高等工程数学》习题卷一(AI出题)

第1大题(共8小题,每小题5分,共40分)1.1 给定线性空间V=span{(−1,1,0),(0,1,1),(1,1,1)}V=\mathrm{span}\{(-1,1,0),(0,1,1),(1,1,1)\}V=span{(−1,1,0),(0,1,1),(1,1,1)},向量v=(1,2,3)\mathbf{v}=(1,2,3)v=(1,2,3)在该基下的坐标为多少?解答过程:设v=a(−1,1,0)+b(0,1,1)+c(1,1,1)\mathbf{v}=a(-1,1,0)+b(0,1,1)+
原创
博文更新于 2023.04.17 ·
1149 阅读 ·
2 点赞 ·
2 评论 ·
7 收藏

《高等工程数学》试题卷二(第一部分,每个题型3道例题,AI出题)

1.1 给定线性空间的一个基,求一给定向量在该基下的坐标例题一:已知线性空间VVV的一组基B={v1,v2,v3}B=\{v_1,v_2,v_3\}B={v1​,v2​,v3​},向量v=(2−13)v=\begin{pmatrix}2\\-1\\3\end{pmatrix}v=⎝⎛​2−13​⎠⎞​在该基下的坐标是多少?解题过程:根据坐标的定义,向量vvv在基BBB下的坐标应该为一个向量(a1,a2,a3)(a_1,a_2,a_3)(a1​,a2​,a3​),使得v=a1v1+a2v2+a3v3v
原创
博文更新于 2023.04.17 ·
1095 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

《高等工程数学》试题卷二(第二部分,每个题型3道例题,AI出题)

2.1 给定一线性变换T,及原像,求该原像的像以下是三道例题及其解题过程和答案:例题1:给定线性变换T,其中T(x,y) = (2x+y,3x+2y),求向量(1,2)在该变换下的像。解题过程:将向量(1,2)代入线性变换T中,有:T(1,2) = (21+2,31+4) = (4,7)因此,向量(1,2)在该线性变换下的像为(4,7)。答案:(4,7)例题2:给定线性变换T,其中T(x,y,z) = (x-y,y+z,2x+3y+z),求向量(1,2,3)在该变换下的像。解题过程:将向
原创
博文更新于 2023.04.17 ·
1127 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Qt中修改界面类的类名时需要注意的几个修改点

有些时候因为一些原因,需要修改Qt中创建的界面类,需要特别注意几个修改点。比如将test类修改为test2类以上部分为修改名称,还需要修改test2.h中的内容;
原创
博文更新于 2023.04.05 ·
3247 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

《高等工程数学》各知识点解题思路梳理(基于AI模型)

《高等工程数学》各知识点解题思路梳理,来自chatGPT
原创
博文更新于 2023.04.05 ·
2100 阅读 ·
3 点赞 ·
0 评论 ·
14 收藏
加载更多