anda0109
码龄17年
求更新 关注
提问 私信
  • 博客:1,536,517
    社区:674
    问答:435
    学院:25,193
    1,562,819
    总访问量
  • 240
    原创
  • 916
    粉丝
  • 106
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2009-03-29

个人简介:密码学与信息安全,区块链,分布式数据库/存储,现在ALL IN人工智能。公众号:老唐AI进化论

博客简介:

错位竞争,单点突破。

博客描述:
专注密码学与信息安全、区块链、分布式存储、分布式数据库、人工智能领域。
查看详细资料
个人成就
  • 领域专家: C/C++技术领域
  • 获得793次点赞
  • 内容获得184次评论
  • 获得1,209次收藏
  • 代码片获得531次分享
  • 博客总排名13,583名
  • 原力等级
    原力等级
    3
    原力分
    431
    本月获得
    2
创作历程
  • 20篇
    2025年
  • 10篇
    2022年
  • 28篇
    2018年
  • 14篇
    2017年
  • 76篇
    2016年
  • 65篇
    2015年
  • 79篇
    2014年
  • 4篇
    2013年
  • 9篇
    2012年
  • 21篇
    2011年
  • 1篇
    2010年
  • 7篇
    2009年
成就勋章
TA的专栏
  • AI应用探索
    13篇
  • leveldb从入门到精通
    13篇
  • CUDA并行编程
    4篇
  • 微信小程序开发
    17篇
  • 信息安全
    14篇
  • C++开发
    7篇
  • 浏览器插件开发
    15篇
  • HTML5从菜鸟到高手
    19篇
  • 上位机编程
  • C/C++
    88篇
  • IT视界
    2篇
  • LDAP协议
    3篇
  • 数据库
    3篇
  • 职业发展
    11篇
  • 安全认证
    31篇
  • 驱动开发
    6篇
  • Aix/Linux
    5篇
  • 研发管理
    3篇
  • MFC/QT
    5篇
  • error解决
    8篇
  • 性能优化
    2篇
  • 网络协议
    10篇
  • 图像处理
  • 架构设计
    4篇
  • boost学习
    19篇
  • 逆向工程
    1篇
  • 人工智能
    1篇
  • STL学习
    6篇
  • 读书笔记
    17篇
  • 技术创业
    1篇
  • PHP入门
    24篇
  • 远程控制
  • 界面美化
    1篇
  • 透明加解密
    3篇
  • 项目管理
  • CSP
    8篇
  • Windows开发
    16篇
  • 虚拟现实
    1篇
  • 前端开发
    21篇
  • 互联网
    1篇
  • HTML5
    17篇
  • 生活随想
    6篇
  • 微信小程序
    17篇
  • 搞定C++面试
    3篇
  • C++设计模式
    11篇
  • 视频教程
    2篇

TA关注的专栏 6

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 1

兴趣领域 设置
  • 编程语言
    c++c语言
  • 后端
    分布式
  • 人工智能
    深度学习
  • 网络与通信
    tcp/ip
  • 网络空间安全
    密码学
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

42人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

智能体开发实战:用Deepseek做一个生成思维导图的智能体

【摘要】在信息过载时代,一款基于ZAI智能体平台的"智能图表"工具应运而生。该工具利用大语言模型分析文档/网页内容,一键生成思维导图、鱼骨图或树状图,可视化呈现核心观点与逻辑结构。用户可通过上传文档、输入网址或主题三种方式快速获取内容精华,大幅提升阅读效率。该工具仅用一天开发完成,依托Antv/G6框架实现前端渲染,现已在ZAI平台开放体验,帮助用户从海量信息中高效提取关键内容。(150字)
原创
博文更新于 2025.08.15 ·
581 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

All In AI两个半月,我的成长路径、总结与未来规划。

摘要:作者分享了自己从接触DeepSeek AI到全职投入AI创业的历程。春节期间被AI推理能力吸引后,经历了本地部署模型、购买工作站等探索,最终开发出智能体平台ZAI(Zero to AI)。平台包含模型管理、工具管理、知识库管理和智能体编排四大功能模块,支持多种大模型接入和RAG应用开发。目前已完成线上部署(zycdai.com),未来计划扩展工具库、开发通用模板智能体并持续优化性能。文章记录了作者从AI爱好者到创业者的转变过程,展现了当前AI领域的发展机遇与挑战。
原创
博文更新于 2025.08.15 ·
1151 阅读 ·
43 点赞 ·
0 评论 ·
17 收藏

一个例子看LLM的工具调用流程

前面在我们使用langchain等框架做多工具调用的时候,我们不清楚具体的交互流程。LLM的推理过程是怎么样的,是一次做完规划还是逐个调用工具。我们今天直接使用openai的接口,用原始的写法来看它具体执行的过程是怎样的。
原创
博文更新于 2025.05.12 ·
414 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

10-小米开源的MINO模型,到底什么水平。

总的来说,MiMo-7B如果是6个月前发,可能算得上推理模型的顶流。今天发,应该不会引起太多关注。对于我们普通的推理模型使用者,也不用关注这个模型。Deepseek-R1、Qwen3系列4b以上模型,任一个性能都比它要好。他的价值在于将探索过程公开,使用推理数据做预训练,使基础模型天然具备推理潜力,同时在强化学习奖励机制和性能方面做了一系列优化。为开源社区提供见解和思路,也是一种贡献。深度探索AI应用。
原创
博文更新于 2025.05.01 ·
1041 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

09-Qwen3开源,性能全面碾压deepseek,本地部署实测来了

对于阿里新开源的模型Qwen3,用相对少的参数获得了更高的性能,将会进一步降低模型的使用成本。这将进一步促进大模型应用的发展。同时,思考和非思考模式合二为一,不管对于使用体验还是部署成本也是一个重大的进步。还有,工具调用支持能力,对于Agent极其重要。虽然在我的测试中存在瑕疵,相信官方版本中会解决这个问题。好了,Qwen3的分享就到这里。今天的Qwen3力压deepseek,同样期待明天deepseek-R2的再次超越。深度探索AI应用。
原创
博文更新于 2025.04.30 ·
1733 阅读 ·
25 点赞 ·
0 评论 ·
18 收藏

08-5分钟用langchain实现一个能查天气的Agent

Agent可以经过反复调研为我们出股票分析报告,可以根据我们的需求和预算帮我们制定旅游计划,甚至可以根据我们的需求帮我们写一个网站。它不再是简单的只能对话的“玩具”,而是可以规划和执行的帮手。也就是具有了Resoning + Action的能力。能根据模型的推理和规划,来调用工具,完成复杂任务,这就是对Agent最基本的理解。重点是根据模型的推理和规划来调用工具,而不是人为硬编码固定流程来调用工具,后者我们一般称为workflow。
原创
博文更新于 2025.04.28 ·
1251 阅读 ·
25 点赞 ·
0 评论 ·
25 收藏

07-轻松实现文字转语音 - Coqui TTS部署实践

Coqui TTS是一个开源的文本转语音(TTS)工具包,旨在提供高质量、灵活且易于使用的语音合成解决方案。它由 Mozilla 的 TTS 项目发展而来,并在社区的支持下不断改进和扩展。Coqui TTS 支持多种语言、模型架构和声码器,适用于从研究到生产的各种场景。
原创
博文更新于 2025.04.28 ·
2183 阅读 ·
25 点赞 ·
0 评论 ·
23 收藏

06-A2A协议:解锁多Agent协作的无限可能

功能发现:Agent可以使用 JSON 格式的“Agent card”公布其功能,从而允许客户端Agent确定可以执行任务的最佳Agent,并利用 A2A 与远程Agent进行通信。简单来说,A2A协议是由谷歌发起的,用于Agent之间协作的一个协议标准,旨在构建Agent之间协作的生态,推动Agent协作标准,以帮助人类完成复杂的任务。这种协作努力标志着一个共同的未来愿景,即 AI Agent,无论其底层技术如何,都可以无缝协作以自动化复杂的企业工作流程,并推动前所未有的效率和创新水平。
原创
博文更新于 2025.04.17 ·
831 阅读 ·
18 点赞 ·
0 评论 ·
8 收藏

05-一文读懂MCP:连接AI模型与外部世界的桥梁

MCP由Anthropic于2024年11月底推出,目的是解决大语言模型与外部环境交互时的连接问题。它通过建立一种安全、双向的链接,使得大模型能够以一致的方式访问外部资源,同时确保数据的安全性和可控性。MCP(Model Context Protocol,模型上下文协议)是一种开放标准协议,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信方式。它可以被看作是AI应用程序的“USB-C接口”,为大模型提供了一种标准化的方法来连接不同的数据源、工具和服务。
原创
博文更新于 2025.04.14 ·
1128 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

13-Leveldb快照原理及其实现

LevelDB 的快照(Snapshot)机制在实现一致性读取的同时,对 Compaction 的行为也有一定的影响。为了更好地理解这种影响,我们需要从 LevelDB 的快照机制、Compaction 的原理以及两者之间的交互关系入手。例如,如果某个键在版本 100 被删除,但有一个快照的版本号是 99,那么这个键的旧版本数据必须保留,直到该快照被释放。通过合理的快照管理和参数调优,可以缓解快照对 Compaction 的负面影响,从而在一致性和性能之间取得平衡。:无效数据的存在增加了读取路径上的负担。
原创
博文更新于 2025.04.07 ·
908 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

12-leveldb优化读性能的方法

LevelDB 是一个高性能的键值存储引擎,其设计目标之一就是优化读性能。为了实现这一目标,LevelDB 在多个方面采用了特定的技术和方法来提高读操作的效率。一、内存中的快速读取:MemTable 和 Immutable MemTable。:Table Cache 和 Block Cache 提高热点数据的访问速度。:利用 MemTable 和 Immutable MemTable。:无锁设计和快照机制提升并发读取能力。:利用操作系统缓存和预读取技术。:减少文件数量和读取范围。:快速排除不存在的键。
原创
博文更新于 2025.04.02 ·
826 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

11-leveldb compact原理和性能优化

LevelDB 的 Compaction 和垃圾回收机制在保证数据一致性和读写性能的同时,也面临写放大、空间放大等问题。通过调整策略(如分级 Compaction)、并行化、冷热分离等优化手段,可以显著提升性能。实际应用中,需根据工作负载(读/写密集型)和硬件环境(SSD/HDD)选择合适的配置。
原创
博文更新于 2025.04.01 ·
1058 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

GPU编程实战指南04:CUDA编程示例,使用共享内存优化性能

在CUDA编程中,共享内存比全局内存效率高的核心原因在于其。
原创
博文更新于 2025.03.20 ·
1417 阅读 ·
22 点赞 ·
0 评论 ·
12 收藏

04-参数量差20倍!QwQ 32B性能竟超越DeepSeek 671B?性能对比实测

QwQ 是 Qwen 系列的推理模型。与传统的指令调优模型相比,具备思考和推理能力的 QwQ 在下游任务中,尤其是在处理难题时,能够显著提高性能。QwQ-32B 是一个中等规模的推理模型,能够在与最先进的推理模型(例如 DeepSeek-R1、o1-mini)的竞争中取得优异的表现。
原创
博文更新于 2025.03.12 ·
822 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

03-超简单,小白也能使用deepseek构建本地知识库!

想必大家都听说过用大模型构建知识库,目前大模型对于我们个人来说,最容易落地的就是构建自己的知识库了。虽然有很多的在线应用,如腾讯的ima等,但是有些内容我们并不想公开。而且我们与大模型聊天对话的内容也容易泄露个人隐私。因此,本节我就教大家一个最简单的方法使用deepseek部署本地知识库。
原创
博文更新于 2025.03.09 ·
339 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

02-简单几步!在Windows上用GPU运行DeepSeek-R1模型

我们在《文章中介绍了如何编译llama.cpp在本地运行deepseek大模型,但是我们编译的版本是不支持GPU的,如果你的电脑有GPU,可以跟随我们今天的文章,一起把GPU利用起来!
原创
博文更新于 2025.03.09 ·
645 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

GPU编程实战指南03:CUDA开发快速上手示例,GPU性能碾压实测

上一节《GPU编程指南02:CUDA开发快速上手示例》中我们完成了一个使用GPU进行加减乘除四则运算的例子。没有学习的可以先跳转学习这一节,因为它有详细的代码注释,学习完这一篇,你就基本入门了GPU编程。在这个例子中,我们使用GPU进行运算,同时也会用CPU进行运算,然后将两者的结果进行对比,以确保我们代码运行的结果是正确的。既然CPU可以计算,为什么要用GPU呢?因为GPU可以进行并行计算,计算效率高。为了验证这一点,我们将上上节的代码进行完善,分别加入CPU和GPU运算的耗时统计。
原创
博文更新于 2025.03.09 ·
1027 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

GPU编程实战指南01:CUDA编程极简手册

CUDA编程是一个强大的工具,能够显著提升计算密集型应用的性能。理解CUDA的基本原理编写高效的GPU程序解决常见的CUDA编程问题优化CUDA应用性能持续学习和实践是提高CUDA编程技能的关键。建议从简单的示例开始,逐步尝试更复杂的应用场景。
原创
博文更新于 2025.03.09 ·
1262 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

GPU编程实战指南02:CUDA开发快速上手示例

这是一个使用CUDA进行GPU并行四则运算的示例程序。程序展示了如何利用GPU的并行计算能力执行大规模的加法、减法、乘法和除法运算,并与CPU计算结果进行对比验证。
原创
博文更新于 2025.03.09 ·
770 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

01-简单几步!在Windows上用llama.cpp运行DeepSeek-R1模型

Llama.cpp 是一个开源的、轻量级的项目,旨在实现 Meta 推出的开源大语言模型 Llama 的推理(inference)。Llama 是 Meta 在 2023 年开源的一个 70B 参数的高质量大语言模型,而 llama.cpp 是一个用 C++ 实现的轻量化推理端解决方案,适用于运行和测试 Llama 模型。1.轻量化:llama.cpp 是一个非常轻量级的项目,代码简洁且易于编译,适合快速上手和测试。2.开源:完全开源,代码和模型权重都可以自由获取和使用。
原创
博文更新于 2025.03.08 ·
1483 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏
加载更多