- 博客(296)
- 资源 (10)
- 收藏
- 关注
原创 【知识笔记】贝叶斯公式、先验概率、后验概率、似然
先验概率:在观察数据之前,我们对某一事件或参数的初始信念。似然:在给定参数的条件下,观察到某一数据的概率。后验概率:在观察数据之后,结合先验概率和似然更新后的信念。贝叶斯公式将先验概率和似然结合起来,提供了一个更新信念的系统方法,从而得到后验概率。通过这种方式,我们可以在有新数据时不断更新和改进我们的模型和预测。
2024-07-01 23:43:04
3830
2
原创 【论文分享】小红书2024LLM论文分享
什么样子的模型是强模型?是一个直观比较的结果:Acc在这个任务上越好,则认为它越强。随着各大机构的模型越来越强,评估任务越来越复杂,如何在未来更加复杂的任务下评估LLM的能力。
2024-06-27 20:35:06
756
1
原创 少样本学习&元学习
首先是机器学习:然后,什么是元学习(what is meta learning?之前,Component都是让人自己设置的。在Meta Learning中,我们期望它能够自己学出来。不同的meta learning方法就是想办法去学learning algorithm中不同的component。在一般的ML里,L是用训练资料进行计算的。而在meta-learning里面,l是用测试资料进行计算的。
2024-06-13 16:43:50
1176
原创 强化学习算法简明教程-tutorial
强化学习(RL)适用于难以获取标注数据或正确答案未知的场景,智能体通过与环境互动获得奖励信号来学习最优策略。与监督学习不同,RL处理的是序列数据,依赖试错探索,且奖励信号具有延迟性。强化学习可分为基于价值的智能体(学习价值函数)、基于策略的智能体(直接学习策略)和演员-评论员智能体(结合两者)。关键概念包括状态与观测的区别(完全可观测为MDP,部分可观测为POMDP)、动作空间(离散或连续)、策略函数(随机性策略更优)、价值函数(评估状态好坏)以及模型(状态转移概率和奖励函数)。智能体可通过有模型(学习环境
2024-06-13 13:51:49
641
原创 Macbook Air M1配置双屏或三屏显示-基于Displaylink软件
Dell D3100扩展坞及其配件(海鲜市场扩展坞D3100、Dell 65W电源、B-C数据线 = 130元左右)
2024-06-12 13:43:45
3248
原创 Workshop on Argument Mining (ArgMining) 历届会议信息
论点挖掘,作为一个自然语言处理当中的重要任务,伴随着各大NLP顶会已经组织了11届workshop(2024年第11届跟随着ACL2024主会开办)
2024-06-11 15:18:26
1331
原创 人工智能模型的结构化代码分析与复现方法(pytorch深度学习类、LLM类)
(模型架构)定、数、模、训、测、上;(数据挖掘)分、理、洗、构、选、提;
2024-06-06 20:52:44
509
原创 NLP课程笔记-基于transformers的自然语言处理入门
于是学习的问题就拆解为:1. 什么是seq2seq模型?2. 基于RNN的seq2seq模型如何处理文本/长文本序列?3. seq2seq模型处理长文本序列时遇到了什么问题?seq2seq模型的输入可以是一个(单词、字母或者图像特征)序列,输出是另外一个(单词、字母或者图像特征)序列。seq2seq是一种常见的NLP模型结构,全称是:sequence to sequence,翻译为“序列到序列”。顾名思义:从一个文本序列得到一个新的文本序列。潜在的答案:基于循环神经网络(RNN)一类的seq2seq模型,
2024-05-31 17:25:09
963
原创 生成式AI导论2024-李宏毅
当你用类神经网络(模型)来表达这上万个参数的时候,你做的事情就是深度学习。生成式人工智慧是什么?生成式AI的入门课程。
2024-05-26 21:02:00
962
1
原创 ACL文献分享:DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis
Aspect-based sentiment analysis (ABSA) 是一种细粒度的情感分析方法,旨在确定文本中不同方面的情感。具体来说,它不仅识别出文本的整体情感(如正面或负面),还识别出针对特定方面或属性的情感。例如,在一篇关于手机的评论中,ABSA 可以识别出用户对电池续航、屏幕质量、价格等不同方面的情感态度。ABSA 的应用非常广泛,可以用于产品评论分析、客户反馈分析、社交媒体监控等领域,帮助企业更好地理解客户对不同产品或服务方面的满意度和不满之处,从而做出更有针对性的改进。
2024-05-23 19:49:36
520
原创 讲座分享standford cs25 v4:shaping the future of AI from the history of Transformer
2024-05-20 21:41:09
302
原创 ELSEVLER借助Scival Topic:实现从文献到领域的拓展,快速洞察新领域或交叉领域的发展态势。
主讲人:于博士(博士、爱思唯尔客户咨询顾问)讲座内容:本讲座围绕文献发现和课题调研,以Scival实例分析为例,借助Scival Topic:实现从文献到领域的拓展,快速洞察新领域或交叉领域的发展态势。
2024-04-09 19:29:50
220
原创 错误修正:RunError: one of the variables needed for gradient computation has been modified
inplace operation 就是直接对tensor的内容进行修改,而没有使用复制的副本 (An in-place operation is an operation that changes directly the content of a given Tensor without making a copy)。
2024-03-05 22:06:40
1841
原创 CK98-数学家键盘配置
有线模式关闭蓝牙按键,连线之后长按fn+5等待灯闪烁即可。如果升级驱动出现问题,会默认让你恢复的。使用自带的键帽工具即可。
2024-03-02 19:00:10
6301
原创 ACL 2025系统
https://2025.aclweb.org/https://github.com/acl-org/acl-style-files
2024-02-20 10:09:19
1121
原创 LLaVA和LLaVA-Plus视觉指令微调及工具使用构建多模态智能体
LLaVA-Plus 维护着一个技能库,其中包含各种视觉和视觉语言预训练模型(工具),并且能够根据用户的多模式输入激活相关工具,以即时组合执行结果来完成许多现实任务。我们通过实验验证了LLaVA-Plus的有效性,在多个基准测试中取得了持续改进的结果,特别是在VisIT-Bench上达到了的新SoTA。智源社区邀请到了LLaVA的一作柳昊天以及LLaVA-Plus的一作刘世隆,共同分享《LLaVA和LLaVA-Plus视觉指令微调及工具使用构建多模态智能体》欢迎大家观看。
2023-12-20 16:43:56
2221
原创 WarAgent使用多智能体理解人类历史和预防未来国际冲突
最近在这个领域中,还有一些相关的研究,包括使用机器学习来预测战争爆发的研究,例如“Predicting War: A Machine Learning Approach to Understanding Conflict”(2017)和“Forecasting International Conflict Using Ensemble Models and Hybrid Features”(2019)。本文试图通过使用人工智能和大型语言模型,回答人类历史上的战争问题:我们能否在历史的十字路口避免战争?
2023-12-19 13:38:01
949
原创 vsCode使用教程
生成的文件在主目录的.ssh文件当中。"XXX"代表的是客户机中生成的密令。查看密令并复制到linux系统当中。然后重启服务器的ssh服务。不需要密码,流畅进入。在最下面加上这句话。
2023-12-10 13:23:25
1606
原创 【环境配置】Linux Ubuntu+Tesla V100环境配置
屏蔽nouveau开源版本的GPU驱动;当系统安装完成之后,会安装系统开源的NVIDIA驱动版本,名称为nouveau。下面将屏蔽该驱动。首先,创建/etc/modprobe.d/blacklist-nouveau.conf文件,创建/etc/modprobe.d/nouveau-kms.conf文件,将更新一下initramfs。
2023-11-26 00:28:44
9056
5
原创 让大语言模型自主复述,打破与人类对话的壁垒 Rephrase and Respond: Let Large Language Models Ask Better Questions for Thems
对于较小的模型,在复述问题时,会产生扰动,与人的意图差距大。vicuna-13b-v1.5:基于llama2的模型。为了更充分利用大模型的复述能力。让LLM自己提出更适合自己理解的问题。用更好的LLM复述,让更小的模型回答。发现了,GPT自我改进模型的潜力。复述后的问题是可迁移的。
2023-11-22 15:07:39
349
原创 LangGPT作者教你编写高质量提示词
还有一点需要说明的是,我们在写自己的prompt的时候,不应该盲目地追求和堆砌提示词技巧,掌握一个满足需求的核心即可。实际应用的场景下,比较消耗人的token。结构话提示词的本质是,方法论的封装。解决了提示词的标准化的问题。3、最开始用框架、用模版,然后从中汲取方法论,写自己的方法论,生成简短表达。实际上,不需要掌握太多框架,掌握一个,形成自己的prompt思路即可。注意,对于弱模型中,结构话提示词可能无效,需要简化结构化prompt。输入想要的prompt的内容,自动生成结构化的提示词。
2023-11-17 21:12:36
1051
原创 利用pandoc实现latex文件转word文件 公式全部转换
你可以使用Pandoc将TeX格式的文章转换为Word格式。Pandoc是一个能够将文档从一种格式转换为另一种格式的命令行工具。首先,确保你已经安装了Pandoc和LaTeX。选项用于指定输入文件为TeX格式。input.tex是你的TeX文件路径。你可以将其替换为你实际使用的文件路径。-o选项用于指定输出文件为Word格式。是你的输出文件路径。你可以将其替换为你想要的文件名和路径。执行命令后,Pandoc将会将TeX文件转换为Word格式并保存在指定的输出路径中。
2023-11-11 19:57:25
3115
原创 【工具注册教程】clauda注册教程
包括空格+1和空格都需要输入进去,如果虚拟号不行,就用US物理卡。主要是结合 sys-activate.orgy进行短信激活验证。注意,要复制完整的手机号,
2023-11-06 14:19:10
120
原创 【教程】HuggingFace Transformers 包使用教程
hugging face教程,建议直接使用官方提供的colab代码,便于快速学习。
2023-11-01 09:06:01
197
sharemouse-window v6.0.62(实际安装后显示v6.0.60,与官方一致)
2024-12-24
BibTeX Export using EN Label Field
2022-05-21
Endnote参考文献输出格式完整版 发布时间2021年7月15日 由于网络原因,下载慢,因此上传一下 只需5个积分
2022-05-21
SDUST_java实验题目汇总
2016-12-27
Fences+v3.0.8桌面管理工具安装包+教程.zip
2020-01-31
javax.servlet api.chnm中文版
2016-12-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅