五阿哥爱跳舞
码龄10年
求更新 关注
提问 私信
  • 博客:1,271,818
    社区:28
    问答:87
    动态:4
    1,271,937
    总访问量
  • 288
    原创
  • 6,687
    排名
  • 42,381
    粉丝
  • 53
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2016-05-05

个人简介:零散知识记录,分享投稿全流程经验;小红薯同名

博客简介:

Everyday try to become better -Kobe Bryant

博客描述:
发上等愿结中等缘享下等福;向高处立就平处坐从宽处行;-左宗棠
查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 获得1,643次点赞
  • 内容获得762次评论
  • 获得5,852次收藏
  • 代码片获得32,680次分享
  • 原力等级
    原力等级
    8
    原力分
    6,659
    本月获得
    50
创作历程
  • 19篇
    2025年
  • 45篇
    2024年
  • 57篇
    2023年
  • 96篇
    2022年
  • 33篇
    2021年
  • 4篇
    2020年
  • 10篇
    2019年
  • 1篇
    2018年
  • 12篇
    2017年
  • 19篇
    2016年
成就勋章
TA的专栏
  • 强化学习实践
    付费
    3篇
  • 科研路上欢乐多
    37篇
  • 论文分享
    7篇
  • 代码复现
    10篇
  • LLM
    23篇
  • NLP
    2篇
  • CV图像
    15篇
  • 地质科学
    4篇
  • 生物信息学
    14篇
  • 数学与统计学
    2篇
  • 工程管理
  • 算法的术与道
    6篇
  • 图神经网络/图表示学习
    16篇
  • 无监督&弱监督学习
    1篇
  • 元学习&小样本学习
    1篇
  • 机器学习
    37篇
  • 数据库&大数据相关
    5篇
  • 软件&软件调试问题若干
    68篇
  • python
    10篇
  • Java
    11篇
  • C/C++ 与 数据结构
    11篇
  • 英语
    10篇
  • 生活
    6篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 5

兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络pytorch数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 收藏
  • 关注/订阅/互动
  • 最近

  • 文章

  • 专栏

  • 资源

  • 收藏

  • 关注/订阅/互动

搜索 取消

【MDPI】MDPI论文投稿全流程实例讲解

MDPI官方给提供了旗下期刊的统一的Latex模版,如果随时要换旗下的其它期刊的话,用统一模版方便重新提交,如果不用的话,就每次都要去找对应期刊的word或者latx模版。点击Submiet to Cells后注册并登陆投稿系统。一步一步投稿即可,没有很绕和很复杂的地方。如果有什么不明白的,欢迎留言。在投稿页也会有word模版。
原创
博文更新于 2025.12.09 ·
83298 阅读 ·
85 点赞 ·
130 评论 ·
290 收藏

【环境配置】mac安装ollama 调用大模型进行调试

本文介绍了在Mac系统上安装和使用Ollama调用大模型的步骤。首先通过官方文档下载安装Ollama软件,然后从模型库中搜索并下载所需模型(如qwen2.5系列)。模型默认存储在根目录下的.ollama/models文件夹中。安装完成后,用户可以直接通过Ollama界面选择已下载的模型进行使用。整个过程包括软件安装、模型下载和调用三个主要步骤,为开发者提供了便捷的大模型调试环境。
原创
博文更新于 2025.12.09 ·
287 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

复现TransUnet官方代码用于训练自己数据集-超详细实操和debug记录

正常我们是直接利用test_vol_h5和train_npz中的文件名来生成,但是,我们在上一步并没有对数据进行划分,因此在这里生成list的时候,就需要进行划分了。在根目录下创建prepareddata文件夹,并在其中创建image_data3_crop_deleted和image_data3_crop_deleted文件夹、以及图像转化工具getnpz_test.py和getnpz_train.py 还有列表生成工具write_test_txt.py和write_train_txt.py。
原创
博文更新于 2025.11.02 ·
7523 阅读 ·
40 点赞 ·
11 评论 ·
173 收藏

强化学习常用数据集

本文整理了强化学习训练中常用的数学推理和问答等类型的数据集。采用领域+注释类型的分类架构进行整理。
原创
博文更新于 2025.10.29 ·
919 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【环境配置】Linux安装conda+pytorch(cpu和gpu版本)+ conda 环境使用教程

一、如何创建一个新的conda子环境注意:尽量避免直接使用conda自带的base环境1.1 进入conda#conda 环境变量配置成功后,命令窗口直接conda就会进入conda环境 (安装conda的过程自行百度-~-)conda # 查看conda当前已有的子环境conda env list1.2 创建conda环境#下面这句话注意两点:1 yourEnvironmentName你随便起,就是你的环境名字 2python==3.7.0是指定该环境的python版本,一定要填你所需要
原创
博文更新于 2025.10.18 ·
18589 阅读 ·
17 点赞 ·
2 评论 ·
107 收藏

【工具教程】linux 下的docker 入门教程

下面如果由于网络问题无法进行,则参考镜像站一键安装docker。
原创
博文更新于 2025.10.18 ·
241 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Linux系统常用命令集合

转载,linux常用命令大全https://blog.csdn.net/qq_23329167/article/details/83856430/我自己常用的命令
原创
博文更新于 2025.10.17 ·
334 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Git使用教程-基于github和gitee

对git中的文件进行修改之后,会发现文件出现了不同的状态变化;
原创
博文更新于 2025.10.17 ·
469 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

【环境配置】macbook 配置环境变量

【代码】【环境配置】macbook 配置环境变量。
原创
博文更新于 2025.09.26 ·
399 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

【环境配置】Linux Ubuntu+Tesla V100环境配置

屏蔽nouveau开源版本的GPU驱动;当系统安装完成之后,会安装系统开源的NVIDIA驱动版本,名称为nouveau。下面将屏蔽该驱动。首先,创建/etc/modprobe.d/blacklist-nouveau.conf文件,创建/etc/modprobe.d/nouveau-kms.conf文件,将更新一下initramfs。
原创
博文更新于 2025.09.26 ·
9049 阅读 ·
20 点赞 ·
5 评论 ·
46 收藏

openai_api和doc文档的实验笔记和内容解读

错误原因:openai.ChatCompletion.create(proj:MAD)api调用的问题,以及一些旧版的api的内容,可以在api 应用程序接口 中找到。大多数的内容都可以从官方文档的搜索当中找到。最新的调用代码应该参考官网为。
原创
博文更新于 2025.09.26 ·
992 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

【操作系统】实验室集群(jjobs系统)使用方法

第一步:编写脚本文件vim test1.sh输入以下内容#!/bin/sh#JSUB -q normal #JSUB -n 4 #JSUB -e error.%J #JSUB -o output.%J #JSUB -J my_jobsource /apps/software/anaconda3/bin/activate pyth37 python src/main_pytorch.py --input data/gen_disease_idx_mul --schema m
原创
博文更新于 2025.09.08 ·
4040 阅读 ·
5 点赞 ·
2 评论 ·
33 收藏

【IEEE】IEEE论文接收后proof(校样)全流程实例讲解

IEEE Proof 论文校稿
原创
博文更新于 2025.08.28 ·
121590 阅读 ·
215 点赞 ·
375 评论 ·
511 收藏

Workshop on Argument Mining (ArgMining) 历届会议信息

论点挖掘,作为一个自然语言处理当中的重要任务,伴随着各大NLP顶会已经组织了11届workshop(2024年第11届跟随着ACL2024主会开办)
原创
博文更新于 2025.08.22 ·
1331 阅读 ·
17 点赞 ·
0 评论 ·
16 收藏

强化学习框架VeRL全面解析(架构、调试、修改与应用)

本文介绍了字节跳动推出的VeRL强化学习框架及其核心特点。VeRL针对LLM时代需求,提出了Single-controller、Multi-controller和Hybrid Engine三大创新设计,简化了RL工作流程并提升效率。文章详细阐述了VeRL的分布式实现新范式,比较了单控制器与多控制器方案的优劣,并介绍了混合控制器思路。此外,还提供了VeRL调试方法指南,包括Ray分布式调试插件安装和断点设置技巧。
原创
博文更新于 2025.08.15 ·
4867 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

【博客搭建】无需服务器利用github.com搭建自己的个人博客(并用个人域名重定向)

在域名解析操作时,如果需要将域名解析的地址指向另一个域名,再由另一个域名提供IP地址,此时就需要使用到CNAME类型解析。在腾讯云域名解析后台(即腾讯云云解析平台)进行此项操作的时候,只需要将对应的域名解析记录的类型指定为CNAME,并且将记录值指向目标域名即可,记录值填写目标网址即可。按照上述步骤填写好域名解析记录保存后,一般10分钟内即解析生效,腾讯云如何将一个域名解析到另一个域名的设置方法讲解完毕。............
原创
博文更新于 2025.08.10 ·
601 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

Overleaf个人简历制作方法

本文介绍了在Overleaf上使用LaTeX制作学术简历时如何插入Google Scholar图标。首先需要选择合适的简历模板,然后通过添加academicons和fontawesome5宏包来支持学术图标。文章详细说明了修改编译器的步骤,并提供了在线查询FontAwesome图标的网址,帮助用户快速找到所需的学术图标资源,使简历更具专业性。
原创
博文更新于 2025.07.25 ·
620 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

overleaf在线latex编辑工具基础用法入门

通常来说,在期刊投稿网站information for author中找template。下载压缩包后上传到over leaf中。在引用文献之前,要保证.bib文件中已经放入了所有要引用的文献信息,然后根据命令简单引用即可。tables generator,可以用来快速生成 latex表格代码。加入找不到官方模板,用overleaf中的。.bib文件,是latex中的引用文件。
原创
博文更新于 2025.07.21 ·
2375 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

vsCode使用教程

生成的文件在主目录的.ssh文件当中。"XXX"代表的是客户机中生成的密令。查看密令并复制到linux系统当中。然后重启服务器的ssh服务。不需要密码,流畅进入。在最下面加上这句话。
原创
博文更新于 2025.07.18 ·
1606 阅读 ·
18 点赞 ·
0 评论 ·
27 收藏

【论文分享】小红书2024LLM论文分享

什么样子的模型是强模型?是一个直观比较的结果:Acc在这个任务上越好,则认为它越强。随着各大机构的模型越来越强,评估任务越来越复杂,如何在未来更加复杂的任务下评估LLM的能力。
原创
博文更新于 2025.07.17 ·
756 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏
加载更多