无极低码智能问数
码龄15年
求更新 关注
提问 私信
  • 博客:1,411,066
    社区:5,637
    问答:5,519
    动态:206,033
    学院:2,345
    视频:121
    1,630,721
    总访问量
  • 460
    原创
  • 9,039
    排名
  • 3,171
    粉丝
  • 0
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
目前就职: 兰州量子数创智能科技有限公司
加入CSDN时间: 2011-06-22

个人简介:多行业解决方案架构师,全栈开发 无极低码作者、智能问数作者 寻求商务合作 可提供商业软件研发,大模型智能体开发,企业培训,解决方案咨询,需求,方案,设计,编码,验收等项目的周期全过程,设计包括数据库设计,架构设计,原型设计,数据安全等,前端原生APP编码开发,web版移动端开发,微信开发,pc端管理系统开发,涉及技术点包括,数据采集爬取,缓存应用,语音识别与语音合成,Gis开发,大数据可视化,地图导航类,移动办公,电力巡航,天气服务等多个领域,涉及交通,应急,地震,政务,旅游,教育、政务多个行业,可以为企业提供完整的技术输出与技术方案

博客简介:

无极低码

博客描述:
https://wheart.cn/
查看详细资料
个人成就
  • 获得3,054次点赞
  • 内容获得257次评论
  • 获得2,504次收藏
  • 代码片获得3,795次分享
  • 原力等级
    原力等级
    7
    原力分
    4,145
    本月获得
    6
创作历程
  • 31篇
    2025年
  • 196篇
    2024年
  • 82篇
    2023年
  • 50篇
    2022年
  • 54篇
    2021年
  • 45篇
    2020年
  • 5篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • deepseek实战
    付费
    10篇
  • 微信小程序
    付费
    1篇
  • 0行代码写服务
    付费
    19篇
  • 爬虫实战
    付费
    11篇
  • 人工智能
    29篇
  • sql
    22篇
  • 0行代码写服务(公开版)
    21篇
  • 无极低码
    33篇
  • 无极低码基础版(部署版)
    8篇
  • deepseek
    12篇
  • Python学习笔记
    47篇
  • 无极低码高级版
  • linux
    21篇
  • 服务器
    10篇
  • 小知识
    46篇
  • 区块链元宇宙web3.0
    3篇
  • 钉钉开发
    1篇
  • ActiveMQ
    4篇
  • 数据可视化
    42篇
  • GIS
    20篇
  • 前端
    37篇
  • JS
    27篇
  • 数据库
    10篇
  • 开发工具问题
    9篇
  • 安全
    9篇
  • 小程序
    13篇
  • 项目管理
    2篇
  • 区块链
    2篇
  • 数字政府建设
    2篇
  • 需求管理
    1篇
  • 笔记
    3篇
  • 域名服务器证书
    3篇
  • 鸿蒙
    2篇
  • APP
    7篇
  • 数据接口
    14篇
  • java
    84篇
  • 天气
    17篇
  • 大数据
    30篇
  • 微服务
    11篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 9

TA参与的活动 7

兴趣领域 设置
  • Python
    python
  • 编程语言
    javatypescript
  • 开发工具
    eclipsegithubgitsvnpycharmpostmanidea
  • 大数据
    sqlitesqlhadoopredispostgresqlnosql大数据数据仓库etl
  • 前端
    node.jsvue.jslayuielementuihtml前端前端框架
  • 后端
    mysqltomcatspringnginxspring boot爬虫后端restful分布式中间件
  • 云原生
    docker容器微服务
  • 移动开发
    androidandroid studioweb app
  • 区块链
    区块链
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

智能语义搜索核心算法:全链路技术解析与工程实践,将rag向量检索准确率提升到98%以上……

智能语义搜索算法全链路解析 本文系统性地介绍了一套面向数据查询的智能语义搜索算法,从数据准备到检索执行完整链路。该算法采用"数据准备为基础、智能语义搜索为核心、动态学习为迭代动力"的设计理念,包含数据准备层和检索执行层两大核心架构。 数据准备层通过构建向量库、领域词典、数据特征和关联关系,为检索提供高质量输入。检索执行层采用四步核心流程:1)查询扩展,通过同义词扩展提升召回率;2)向量生成与搜索,将文本意图转化为高维向量进行高效召回;3)智能重排序,基于多维度相关性得分提升精准率;4)动
原创
博文更新于 2025.10.18 ·
197 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

知识库检索过程中,rag主要存在的问题,核心解决方法见文末图

本文系统分析了RAG向量库检索全链路中的核心问题:1)数据与向量表示层存在源数据质量差、语义理解不足和多模态支持弱等问题;2)检索算法层面临相似性计算偏差、召回与精度平衡困难及数据更新滞后等挑战;3)场景适配层问题包括长文本拆分不合理、上下文窗口限制及领域适配不足;4)工程实施层存在大规模检索效率低、资源消耗高等落地障碍。文章最后提出可提供详细的RAG问题排查清单,帮助用户针对性优化各环节。
原创
博文更新于 2025.10.18 ·
99 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

bat文件一建自动创建数据库,启动数据库服务,修改数据库密码,导入数据

本文介绍了一个绿色版MySQL数据库的自动化导入脚本系统。该批处理脚本(import_dl_sql.bat)能够自动完成MySQL的初始化、密码管理、数据库创建和SQL脚本导入全过程。系统包含mysql绿色版目录(含bin执行文件和配置文件)和SQL脚本文件。脚本功能包括:检测MySQL环境、首次初始化数据库、启动服务、密码验证与重置、数据库创建、SQL脚本导入以及服务关闭等完整流程,实现了绿色版MySQL的一键式部署与数据导入。
原创
博文更新于 2025.09.24 ·
162 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

无极低码课程【1.本地环境安装 tomcat部署windows环境厂家乱码处理】,一篇文章让你解决jdk版本,tomcat版本,输出输出流、数据库等所有遇到的乱码问题

本文介绍了Windows下Tomcat的安装步骤及中文乱码问题的解决方案。安装部分提供了两个下载地址,并指导如何启动Tomcat。重点针对HTML页面乱码问题,提出了4种解决方法:设置HTML页面编码、修改Tomcat配置文件、调整JVM编码参数、修改web.xml配置。此外,还提供了控制台日志、数据库检索、内置服务器启动等场景下的乱码处理方案,包括修改日志编码、指定数据库连接参数、设置JVM环境变量等。最后强调了在不同环境中统一编码规范的重要性,并给出了检查当前编码的方法。
原创
博文更新于 2025.09.14 ·
1308 阅读 ·
30 点赞 ·
0 评论 ·
12 收藏

如何将数据库快速接入大模型实现智能问数,实现chatbi、dataagent,只需短短几步,不需要配置工作流!

智能问数系统提供全流程数据决策解决方案,通过三步完成初始化:1)创建管理员账号;2)配置AI模型参数;3)确认系统初始化。该系统实现自然语言交互分析,支持多层级用户需求,具备六大核心功能:智能语义理解、任务编排、NL2SQL转换、高速查询、可视化呈现和智能总结。典型应用成效包括:将分析时间从数小时缩短至分钟级,降低90%技术门槛,支持20+图表类型输出。系统支持灵活部署方案,可无缝对接现有业务系统,显著提升企业数据决策效率。
原创
博文更新于 2025.08.16 ·
569 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

对于人工智能的应用出现了两极分化,一类人极度推崇,一类人极度反感。总体原因还是认知问题。人工智能大模型的发展是势不可挡的趋势,作为新鲜事物少不了历史的局限,历史的局限也有相对性,很多人对于模型的使用不明就里,反正回答不出自己的问题就是有错,但他不会考虑自身提的问题有没有问题,跟人沟通复杂的话还得个三五遍呢。大模型只是一个工具,他就像一把刀,有人用刀杀人,有人用刀救人,有人用刀做饭,关键是看你想用刀干什么,怎么干,大家都拿刀宰杀畜牲,但是都能做到庖丁解牛吗?大家都能用刀做饭,但是都能切出纹丝豆腐吗?大家都识字,但是都能写诗作赋吗?战不善,非兵不利也,自身经历,知识沉淀,思维敏捷性,总结能力都是大模型给不出你想要结果原因……

发布动态 2025.08.01

『需求如下,老铁这个计算一下需要多久?AI直接接入数据库1分钟出结果[裂开],强的可怕!』 按照药品说明书,糖尿病一般是1.0mg/周,肥胖是2.4mg/周,但经和医院临床主任沟通,在实际使用中,减肥用药要小一些,一般超过1.7mg患者胃肠不良反应就非常大,很少直接用2.4mg/周。 1.若高血压合并肥胖,类风关合并肥胖,是可以司美格鲁肽注射液。 2.若仅单独高血压,或类风湿关节炎,不能使用司美格鲁肽注射液。 3.有些患睡眠呼吸暂停综合征,也可以使用司美。 4.减肥:药物最大剂量,每次 2.4mg,每周一次。年度用量:125mg。 5.用于糖尿病降糖:最大剂量,每次 1mg,每周一次。年度用量:53mg。分几类情况提取一下,看看能否找出有不按说明购药或异常用药的线索。目前数据的数据是2024年的

发布动态 2025.07.22

大模型对接数据,实现自然语言检索

发布动态 2025.06.04

如何设计表结构以提高向量检索召回率

本文提出了向量库表结构设计方案,旨在提升检索召回率。核心包含文档内容表、向量数据表和可选文本分块表,支持存储原文、向量及分块信息。建议添加哈希索引、时间索引和IVFFlat/HNSW向量索引优化查询性能。扩展方案包括查询日志和模型版本表。实施建议强调分块处理、维度适配、索引选择、同步更新和内容去重机制。该设计为构建高效向量检索系统提供了完整的技术框架。
原创
博文更新于 2025.05.27 ·
486 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

基于大模型的智能问数,多表多库融合检索,分析,报告生成,图表生成……

发布动态 2025.05.21

纯手搓大模型,智能体……

发布动态 2025.04.18

MCP调用示例说明,以百度地图为例

MCP服务服务端是由服务商提供好的调用代码,比如百度地图路线规划,原来是百度提供了接口,由开发人员自己写代码调用,现在通过本地部署百度提供的mcp服务,只需关系输入参数即可,服务调用由mcp服务端自己调用直接返回结果给mcp客户端。通过 MCP 协议,服务商可以提供预配置的 MCP 服务端,使得开发者可以更方便地调用其服务。
原创
博文更新于 2025.04.18 ·
921 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

要不要使用mcp服务

比如我要做一个agent,可能会用到文件解析,长文本分词,向量化处理,语义化检索,数据库查询语句生成,图表生成,结果分析等。
原创
博文更新于 2025.04.18 ·
487 阅读 ·
17 点赞 ·
0 评论 ·
0 收藏

SentenceTransformer` 模型的完整过程步骤,包括安装依赖、加载模型、编码文本、计算相似度、以及实际应用示例

以下是使用模型的完整过程步骤,包括安装依赖、加载模型、编码文本、计算相似度、以及实际应用示例。
原创
博文更新于 2025.04.16 ·
1507 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

手动创建自己的模型,实现意图识别

通过上述步骤,你可以构建一个能够识别用户意图(统计信息 vs 查询信息)的模型。,可以按照以下步骤设计和训练模型。将模型导出并部署为 API 服务。你需要收集一些用户输入的样本,并为每个样本标注意图类别。如果你没有现成的数据,可以手动创建或模拟一些样例。我们可以通过构建一个文本分类模型来完成这个任务。使用 Hugging Face 提供的。在测试集上运行模型,确保其泛化能力良好。要实现一个模型,能够识别用户输入是想。使用 Hugging Face 的。库对文本进行分词和编码。
原创
博文更新于 2025.04.16 ·
599 阅读 ·
13 点赞 ·
0 评论 ·
0 收藏

大模型的核心配置参数解释

这些文件共同协作,确保模型能够正确加载、初始化并应用于实际任务中。
原创
博文更新于 2025.04.16 ·
909 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

从0创建一个模型的主要步骤

从零创建一个BERT模型需要深入理解Transformer架构和预训练任务的设计。通过以上步骤,可以构建一个基本的BERT模型,并在特定任务上进行训练和微调。
原创
博文更新于 2025.04.16 ·
571 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

如何自己编写一个模型,基于模型微调

开发和训练一个自己的模型是一个复杂但非常有意义的过程。以下是详细的步骤,涵盖了从环境搭建到模型微调的全流程。以下场景中文自然语言处理(NLP)任务为例,比如意图识别或文本分类。使用 Hugging Face 提供的预训练模型(如。为例,假设你要构建一个能够识别用户意图的模型。在开始之前,明确你的任务目标非常重要。收集与任务相关的数据。
原创
博文更新于 2025.04.16 ·
696 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

如何实现一个意图识别模型

在对话过程中识别用户需求是构建智能对话系统(如聊天机器人、虚拟助手等)的核心任务之一。为了实现这一目标,意图识别(Intent Recognition)和槽位填充(Slot Filling)通常是两个关键步骤。对话管理模块负责维护对话状态,并根据用户意图和历史对话记录决定下一步的动作。意图识别和槽位填充可以看作是相关的任务,因此可以通过多任务学习的方式同时优化这两个任务。要实现高质量的意图识别,需要准备高质量的训练数据。意图识别的目的是理解用户的意图或目的。两者结合可以更好地理解用户的需求。
原创
博文更新于 2025.04.16 ·
2008 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

基于大模型的,智能语义识别检索,舆情监测分析……

发布动态 2025.04.15
加载更多