glanose
码龄16年
求更新 关注
提问 私信
  • 博客:215,559
    社区:1
    215,560
    总访问量
  • 51
    原创
  • 105
    粉丝
  • 29
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2009-06-26

个人简介:用人类大脑学习机器学习

博客简介:

数据分析之路

查看详细资料
个人成就
  • 获得105次点赞
  • 内容获得19次评论
  • 获得166次收藏
  • 博客总排名2,124,048名
创作历程
  • 4篇
    2018年
  • 42篇
    2017年
  • 10篇
    2016年
成就勋章
TA的专栏
  • TensorFlow
    7篇
  • 机器学习
    21篇
  • 学习笔记
    36篇
  • MySQL
  • 数据分析
    15篇
  • 随笔
    19篇
  • python
    4篇
  • 实习笔记
    4篇
  • 深度学习
    11篇
  • 面经笔经
    9篇
  • 数据挖掘
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

第一次参加Kaggle

感受:真的能学到好多东西。感觉最大的不同就是kaggle里你是按照自己的想法去写代码的,想到哪里写哪里,如果一个语法写不出来就用别的办法绕过,所以基本上都能写出来。终于没有那种被python的奇葩语法各种烦的感觉了,可能是自己也熟一点了,也可能是感觉自己做的事情更有意义了。而且最后看看自己是怎么被大神各种虐的,学到一招两招,也是超爽的感觉。
原创
博文更新于 2016.09.25 ·
2808 阅读 ·
3 点赞 ·
4 评论 ·
2 收藏

(更新)数据挖掘,自学一年拿了腾讯京东华为网易YY的Offer,方法与建议

成果秋招结束了,我最终获得了:腾讯京东华为网易游戏欢聚时代搜狐视频这几个offer,均待遇不错,收获颇丰。写作动机回想起一年多以前选择数据挖掘的时候,一度以为找不到工作,非常着急。幸好有令科,梅寒,志韬等师兄为我解答了很多迷津。于是也尝试记录一下自己的学习历程,鉴于往事,以资于后道。 全文分成6个阶段,文章有点长,各位可以直接去看自己的那个阶段,看看我过
原创
博文更新于 2018.11.26 ·
8722 阅读 ·
22 点赞 ·
1 评论 ·
65 收藏

python import midi error

# Linuxsudo apt-get install libasound2-dev swigpip install git+https://github.com/vishnubob/python-midi@feature/python3# Windows删除User\Administrator\Anaconda3\Lib\site-packages里midi开头的文件夹 和info文件pip i...
原创
博文更新于 2018.06.04 ·
1918 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

PyQT5在pyCharm上的设置方法

program选择能import到PyQt的目录(比如在venv里创建的,就选择venv里的python);参数不变 -m PyQt5.uic.pyuic $FileName$ -o $FileNameWithoutExtension$.py ;项目目录,Ui文件存放的目录。
原创
博文更新于 2018.04.22 ·
753 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

如何能紧紧跟上最新技术

深度学习中,经常出现某一些大佬突然整出了个很厉害的东西,把过去很多的尝试和努力都一下子清掉了。这种快速的发展让我感到危机感,并去思考如何保证能实时追踪最新技术。首先,提炼需求:实际上我们真正怕的就是有人闭门造车,而且还很牛逼的车,一下子把过去的努力秒掉了。如果是这样的话,大家一开始都是被秒的,以后看谁结合得快,跟行业结合得好有盈利,这应该就需要上面1+2的积累真正怕的不是闭门造车,而是车公布了以后...
原创
博文更新于 2018.04.22 ·
994 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习中检验样本抽样的均匀——KL散度检验和K-S检验

最近做的一个项目中,需要对原来的数据进行一定量的采样形成训练集,因此需要保证采样的均匀性以保证样本参数的同分布性。样本数据是这样的:ID.wavDate可以看到,样本数据只有日期参数可以使用,所以我采用对抽样后的样本跟总体的日期参数进行分布检验的方法。因为日期的分布不具有分布假设,所以需要用非参数检验方法,直接比较两个分布的差异,我找到两种方法:1.机器学习中常用的KL散度方法2.社会统计学中常用...
原创
博文更新于 2018.04.04 ·
7350 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

官网安装tensroflow遇到Could not find a version that satisfies the requirement tensorflow-tensorboard

环境:Python 3.6.3Anaconda 5.0.1Ubuntu 16.04仿照官网安装tensorflow-gpu出错pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.5.0-cp36-cp36m-linux_x86_64...
原创
博文更新于 2018.02.12 ·
8709 阅读 ·
6 点赞 ·
2 评论 ·
0 收藏

pytorch安装问题,使用soumith的conda源,下载安装很慢的解决方法

那个清华镜像的版本又太低,尝试了很多办法,最终方案却很简单:首先更新pip(非anaconda使用者请跳过这步):conda install pipconda update pip尝试用官网的pip源安装,如下:pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp35-cp35m-man
原创
博文更新于 2018.01.27 ·
24082 阅读 ·
4 点赞 ·
2 评论 ·
11 收藏

如何从零开始写一份标准的TensorFlow代码(面向小白编程)

一步一步对照代码写出规范的TensorFlow代码,面向只会函数式Python编程的小白(如鄙人)
原创
博文更新于 2017.12.03 ·
5132 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

状态机编程

状态机编程
原创
博文更新于 2017.12.03 ·
611 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习的学习方法

先学会一些常用数学,统计,思考方式等工具。然后理解新的模型的“步骤”(当有工具的时候,大概了解在数学上和哲学上这些模型是怎么构筑的就行,详细的证明当数学熟练后可以推出)
原创
博文更新于 2017.11.27 ·
458 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

400字重写深度学习的知识框架

跑模型太无聊,想重新整理自己对深度学习的理解,重写知识框架。本来300字应该能写完的,不过要加上例子就400字吧。
原创
博文更新于 2017.11.19 ·
644 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《深度学习》/《Deep Learning》——深度学习圣经的读书笔记

学习方法对着书看一遍,把理解的内容写成笔记看完一章后,看着笔记和书,把内容复习一下,把需要画线的地方画好并理解逐层深入:这本书讲解基础概念讲得不生动,但是高层次上有很多不错的高瞻远瞩的见解,所以先看网文理解到基本的网络(如RNN-LSTM),然后看书深化理解*. JumpingJumping ReadRead:读某一章很痛苦的时候,先读后面一章,然后返回来读熟悉语音,VAE,tf,pytho
原创
博文更新于 2017.11.03 ·
17675 阅读 ·
3 点赞 ·
0 评论 ·
33 收藏

【秋招总结】我的数据分析之路已经结束了,或者说,后会有期了

我们都不知道自己什么时候会死,也不知道未来会有什么机遇,会发生什么灾难。连生命的真正长度都不知道,连到目标的真正距离都不知道,连我们走到哪了都不知道,连坐标都不知道。为什么不一路上做点开心的事情呢?想要的东西,到时候再去拿就好了。开心的时光,是能被可再生的吗?一年前的我肯定会觉得我是个傻瓜但是我和解了,我跟生活达成了和解。可惜的只有这个博客的名字,暂时会有一段时间名不副实了。
原创
博文更新于 2017.10.15 ·
856 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

在实习的公司遇到大量的无标签数据怎么办——利用SVM进行Active Learning主动学习

怎么办?进行Active Learning主动学习Active Learning是最近又流行起来了的概念,是一种半监督学习方法。一种典型的例子是:在没有太多数据的情况下,算法通过不断给出在决策边界上的样本,让打标者进行打标,使得算法明确分类边界,该算法结合On-Line的使用和灰度测试等方法,可以在有大量无标签数据和大量用户资源的时候,从无到有地创建良好的分类器。如何进行主动学
原创
博文更新于 2017.10.15 ·
7678 阅读 ·
2 点赞 ·
0 评论 ·
21 收藏

XGBoost模型跟Logistic Regression模型的本质区别

把握机器学习算法关键点有两个1、loss function的理解(包括:特征X/标签Y配对的建模,X/Y配对建模的loss function的设计)。2、loss function的求解过程。这两点串接在一起构成了算法实现的主框架。
原创
博文更新于 2017.09.25 ·
12030 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

XGBoost代码走读分析笔记

http://blog.csdn.net/a819825294/article/details/51206410#t6读了雪伦大佬的走读分析,非常清晰,我写一下自己的理解,狗尾续貂了XGBoost运行流程:简略来说,XGBoost只做两件事:1.main函数调用InitModel初始化模型,初始化的时候选择Loss,及分类器2.迭代用Boost方法更新模型(UpdateOneIter),每次更新的时候做几个操作:PredictRaw,GetGradient,DoBoost。分别是计算残差,计算
原创
博文更新于 2017.09.25 ·
921 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

腾讯社交广告大赛回来的感悟

腾讯社交广告大赛回来的感悟参赛优秀队伍合照
原创
博文更新于 2017.09.25 ·
1026 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CART,回归树,GBDT,XGBoost,LightGBM一路理解过来

CART,回归树,GBDT,XGBoost,LightGBMCART:根据特征的阈值把叶子节点的类别归为离散的类别 XGBoost的四大改进:①改进残差函数不用Gini作为残差,用二阶泰勒展开+树的复杂度(正则项)带来如下好处:1.可以控制树的复杂度2.带有关于梯
原创
博文更新于 2017.09.25 ·
5984 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

腾讯校招基础研究岗相关:请解释LR/logistic regression/对数几率回归/逻辑回归/逻辑斯蒂回归

据说每一个机器学习学习者都会写一篇有关自己对LR的理解文章,查了很多资料后,我今天就写一下我的LR。本文的重点是:为什么要LR,为什么要用logistic函数,为什么要用对数几率,以及他们是怎么求出来的。(我不喜欢公式,但是有的时候比文字更清楚,所以这篇文章里的公式要么就是可以忽略的,要么两个公式之间一定是可以2分钟内推出来的,也就是说是能很简单的理解“为什么从这个公式能变成这个”的)
原创
博文更新于 2017.09.14 ·
1339 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多