程序员鑫港
码龄4年
求更新 关注
提问 私信
  • 博客:1,627,877
    社区:24
    1,627,901
    总访问量
  • 904
    原创
  • 1,372
    排名
  • 6,646
    粉丝
  • 7
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-12-20

个人简介:第四次工业革命,致富浪潮-AGI大模型,你是否能搭上这趟车

博客简介:

程序员鑫港的博客

查看详细资料
个人成就
  • 获得16,008次点赞
  • 内容获得79次评论
  • 获得15,281次收藏
  • 代码片获得4,936次分享
  • 原力等级
    原力等级
    8
    原力分
    6,288
    本月获得
    100
创作历程
  • 445篇
    2025年
  • 309篇
    2024年
  • 25篇
    2023年
  • 117篇
    2022年
  • 21篇
    2021年
成就勋章
TA的专栏
  • 黑客
    3篇
  • 网络安全
    9篇
  • python
    47篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 1

TA的推广
兴趣领域 设置
  • 编程语言
    python
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Python+LangGraph+RAGAS构建复杂RAG系统:哈利波特案例实战

本文详细介绍了使用Python+LangGraph+RAGAS技术栈构建复杂RAG系统的过程。以《哈利·波特》系列书籍为示例数据,展示了三种文档拆分方式(传统拆分、按章节拆分、引号拆分)并基于此构建了三个知识库。教程提供了完整的源码和视频指导,帮助读者从零开始打造可用于生产的RAG系统。
原创
博文更新于 13 小时前 ·
745 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

RAG系统的成败关键:知识库建设与管理的完整指南

知识库是RAG系统的核心和生命线,其质量直接决定了智能问答系统的效果。一个完善的知识库系统需处理多数据源、复杂格式文档、数据更新与版本管理、文档召回优化等多个环节。随着数据量增长,需要通过模块化架构设计提升管理效率。高质量知识库是RAG系统稳定性和扩展性的基础,为大模型时代智能问答提供可靠数据支撑。
原创
博文更新于 13 小时前 ·
735 阅读 ·
15 点赞 ·
0 评论 ·
6 收藏

AI Agent实战指南:从原理到落地,企业数字化转型最后一公里》

AI Agent是能够自主规划、主动执行的新一代AI系统,解决了传统AI被动响应、技术栈复杂、运维成本高的痛点。其核心技术包括目标驱动规划、上下文感知记忆和生态系统交互能力。文章通过车险理赔案例,解析了AI Agent的资源调度架构与协作模式,讨论了落地挑战与解决方案。AI Agent代表了AI从"工具"向"同事"的进化,将降低AI应用门槛,但其成功落地70%取决于企业数字化基础设施完备度。
原创
博文更新于 2025.12.16 ·
757 阅读 ·
24 点赞 ·
0 评论 ·
27 收藏

斯坦福、伯克利与IBM联合报告:AI智能体在生产中的真实状态与2026发展预测

斯坦福、伯克利与IBM联合报告揭示,成功落地的AI智能体以"低调、受控、人机协同"方式存在:73%用于提升生产力,68%仅具有限自主权,80%采用预定义工作流,70%直接使用闭源模型。未来趋势包括协同工作流、推理模型重要性提升、评估体系标准化及私有数据护城河。最有前景的应用领域包括软件工程、金融服务、医疗健康等十大领域,建议从内部高频重复场景入手部署。
原创
博文更新于 2025.12.16 ·
750 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

LangGraph入门指南:构建复杂AI工作流的必学神器

LangGraph是构建复杂AI工作流的神器,其核心三要素为State(状态机)、Node(干活/函数)和Edge(流程控制)。它将复杂流程抽象为可维护的节点,每个节点可引入LLM或工具处理,使工作流清晰可控。作为图形处理引擎,通过compile和invoke执行,state作为共享数据结构在节点间传递更新,适合需要流程控制的应用场景。
原创
博文更新于 2025.12.12 ·
658 阅读 ·
13 点赞 ·
0 评论 ·
8 收藏

RAG系统Chunking策略全解析:从基础到高级,收藏这篇就够了!

本文全面介绍了RAG系统中的Chunking策略,从基础固定大小分块到高级语义、LLM驱动和自适应分块等多种方法。文章详细分析了不同分块策略的适用场景、优缺点及实施步骤,帮助开发者根据文档类型和系统需求选择最佳方案。同时提供了LangChain和LlamaIndex等工具实现指南,并给出了企业落地测试和优化的实用建议,是构建高效RAG系统的重要参考。
原创
博文更新于 2025.12.12 ·
670 阅读 ·
30 点赞 ·
0 评论 ·
23 收藏

大模型RAG完全指南:原理、实战、优化与架构

本文全面介绍RAG(检索增强生成)技术与LlamaIndex框架应用,通过《长安的荔枝》实例解析RAG工作原理、参数优化策略及内部架构。提供从概念到实战代码的完整指导,展示如何用30行代码实现问答系统,以及chunk_size、top_k等参数的调优方法。最后探讨RAG系统与AgentBay工具集成,增强执行能力。内容兼顾理论与实践,适合不同水平读者学习参考。
原创
博文更新于 2025.12.11 ·
880 阅读 ·
32 点赞 ·
0 评论 ·
24 收藏

零代码实现大模型微调!LLaMA Factory全流程保姆级教程

本文详细介绍LLaMA Factory这一零代码大模型微调工具,通过Web界面实现本地模型微调。文章从工具安装开始,讲解模型选择、微调方法(全参数/冻结/LoRA)、模型量化技术及对话模板配置等关键步骤。LLaMA Factory支持100+主流模型,提供多种微调算法和精度选择,适合资源受限场景的企业应用和个人开发者使用,是小白入门大模型微调的理想选择。
原创
博文更新于 2025.12.11 ·
1295 阅读 ·
24 点赞 ·
0 评论 ·
22 收藏

Dify与LangChain v1.0实战:从环境配置到企业级RAG系统构建全指南

本文通过五个关键步骤,详解如何将Dify与LangChain v1.0集成,构建企业级RAG应用。内容包括Dify核心功能解析、LangChain v1.0新特性、环境配置、API调用、数据流转设计、实战案例演示及性能优化策略。文章提供完整代码示例和最佳实践,帮助开发者掌握AI应用开发技术,平衡易用性与灵活性,释放AI生产力。
原创
博文更新于 2025.12.09 ·
731 阅读 ·
18 点赞 ·
0 评论 ·
18 收藏

从RAG到GraphRAG:打造懂业务的新一代智能客服技术指南

文章探讨了智能客服从传统规则系统向大模型驱动的智能体的技术演进,提出新一代智能客服需要"领域大模型的脑"与"知识图谱的骨架"深度融合。通过RAG和GraphRAG技术,结合高质量数据训练和强化学习,构建能理解业务、准确回答的客服系统。未来智能客服将发展为多模态AI智能体,实现从文本问答到实际业务办理的跨越,重塑企业服务模式。
原创
博文更新于 2025.12.09 ·
675 阅读 ·
26 点赞 ·
0 评论 ·
28 收藏

RankLLM:Python包实现大模型文档重排,信息检索新范式

RankLLM是一个开源Python包,利用大语言模型强大的语义理解能力对文档进行重排,提升信息检索质量。它支持多种重排策略(逐点、逐对、列表)和各类模型(闭源与开源),提供高灵活性和自定义能力。RankLLM将各种重排方法整合到模块化框架中,为研究人员提供统一实验平台,也为RAG应用提供可靠工具,已集成到LlamaIndex和LangChain等框架中,广泛被社区采用。
原创
博文更新于 2025.12.05 ·
851 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

不依赖LangChain,手写精简ReAct Agent框架全流程解析

本文介绍如何从零构建不依赖第三方框架的精简ReAct模式Agent,通过感知、思考、行动、执行的循环实现智能行为。文章提供完整Python代码实现(含模拟模式),深入解析意图理解、规划能力和工具调用三大核心原理,并展示实际运行效果。最后提供了扩展思路,包括增加内存、搜索工具和错误处理机制,帮助读者彻底理解大模型智能行为的底层实现。
原创
博文更新于 2025.12.05 ·
778 阅读 ·
31 点赞 ·
0 评论 ·
26 收藏

Agent Never Give Up MCP:让AI Agent自主脱困的实用工具,提升大模型开发效率!

Agent Never Give Up MCP是一个帮助AI Agent自主脱困的工具集,通过内置常见问题解法注入Prompt,使Agent在逻辑复杂、Bug修复失败、需求不明等场景中自主恢复。工具采用双层场景组织结构,包含核心和扩展场景,支持自定义工具配置。云端托管无需本地安装,只需添加服务器配置即可使用,帮助AI Agent识别困境、重新思考、制定新策略,实现无需人工干预的自主恢复。
原创
博文更新于 2025.11.29 ·
952 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

从入门到精通:构建实时RAG架构,解决数据滞后问题

文章讨论了RAG系统中的数据时效性问题,提出了通过CDC机制、消息队列和增量索引更新构建实时RAG架构的解决方案。核心包括:实时捕获数据变更、事件驱动的索引服务、向量数据库的CRUD操作,以及确保ID策略和分块一致性的最佳实践。这种架构能有效解决传统全量索引更新的延迟问题,使RAG系统真正"活"起来,为业务提供最新、准确的信息支持。
原创
博文更新于 2025.11.29 ·
927 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

大模型技术演进:从RAG到自主智能体的产品化之路

文章分析了自主智能体技术的发展历程,指出从RAG到Deep Research的演进是产品化落地的必然趋势。RAG技术在处理复杂认知任务时存在静态pipeline、无法自主规划等瓶颈,而自主智能体通过Planning、ReAct、Multi-Tool Execution等机制实现了任务拆解与自主执行。未来智能体发展将围绕标准化、深度集成、模型小型化、合成数据和Memory机制五大方向展开,真正拐点在于基础设施的完善而非单一模型升级。
原创
博文更新于 2025.11.28 ·
447 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

程序员必备:AI Agent工作原理解析与高效使用技巧

AI Agent是从聊天助手进化而来的全能助理,其核心是"思考→行动→观察"的循环工作流程,由大模型(大脑)、工具(手脚)和流程组成。本文详解了Agent底层逻辑,并提供三个实用技巧:帮助Agent强化思考过程、提供精确的背景信息、创新式使用工具,帮助读者高效利用这些AI工具,不再被复杂功能所困惑。
原创
博文更新于 2025.11.28 ·
523 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

珍藏必读:大型语言模型微调全攻略——14种主流方法原理与实战指南!

本文系统介绍大型语言模型微调技术,涵盖全微调与14种参数高效微调方法,包括BitFit、Prefix Tuning、Prompt Tuning、Adapter、LoRA等。详细分析各类方法的原理、优缺点、适用场景及实践指南,帮助开发者根据任务需求、计算资源等因素选择合适的微调策略,在保持模型性能的同时降低训练成本,实现高效的大模型应用适配。
原创
博文更新于 2025.11.27 ·
721 阅读 ·
31 点赞 ·
0 评论 ·
21 收藏

AI Agent全解析:从本质构成到行业落地实践,一文掌握智能体开发

本文全面解析AI Agent的概念、构成、发展历史及行业应用。作者将AI Agent比作具有"大脑"(LLM+记忆+规划)、"感官"(多模态感知)和"手脚"(行动能力)的智能体,详述其从AI 1.0到AI 2.0的进化历程,并按决策能力与技术实现进行分类。文章强调理解AI Agent是为了提供解决问题的工具箱和结构化思维方式,帮助实践者精准选择和应用适合的Agent解决方案,而非停留在理论层面。
原创
博文更新于 2025.11.27 ·
756 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

企业LLM落地三大支柱:RAG+MCP+Agent实现从对话到执行

文章阐述企业级大模型落地需三大核心组件:RAG提供企业内外知识访问能力,MCP封装企业服务为可调用工具,Agent整合两者实现任务自主规划与执行。三者结合使大模型从"能回答问题"升级为"能完成任务",构成完整的企业智能化架构,推动AI真正在业务中发挥价值。
原创
博文更新于 2025.11.26 ·
550 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

别再混淆了!RAG、LangChain与Agent的真实关系,看这篇就够了

这是个极具代表性的问题——过去十八个月里,无论是刚入行的算法工程师,还是从传统开发转型AI的技术人,几乎都问过我同样的困惑。RAG、LangChain、Agent这三个词总是被捆绑出现,以至于很多人误以为它们是同一维度的技术,甚至必须组合使用才能落地。但事实恰恰相反:一个是业务架构模式,一个是开发工具框架,一个是智能应用形态,三者本质上泾渭分明。
原创
博文更新于 2025.11.26 ·
939 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏
加载更多