
个人简介:{25年6月之后回归原有模式,AI赋能}{23年6月之后由AI完全主导}2023年充分见证了AIGC的强大潜力,在被完全取代之前,依旧不忘初心,坚持更新。(2022年及之后,虽然课程教学所作的努力全部失败,但依然在努力寻找那微弱的光。2021年及以前:LoveRobot,Go!!!!人工智能和机器人粉,从事机器人工程专业本科教学和科研工作,研究方向包括多机器人仿真技术,控制与协作,机器人系统软硬件开发等。)
zhangrelay的专栏
-
领域专家: 人工智能技术领域
-
获得12,944次点赞
-
内容获得4,746次评论
-
获得22,048次收藏
-
代码片获得21,112次分享
-
-
ROS2学习笔记与高校课程分享 104篇 -
ROS Melodic 迷失与救赎
20篇 -
ROS Kinetic 学习笔记 53篇 -
ROS indigo 学习笔记 55篇 -
机器人工程专业 35篇 -
机器人仿真 69篇 -
多机器人系统 38篇 -
GazeboSim仿真平台 31篇 -
ROS_melodic机器人操作系统 19篇 -
ROS_indigo机器人操作系统 101篇 -
ROS_kinetic机器人操作系统 106篇 -
ROS机器人程序设计(第2版)补充 57篇 -
EmotivEpoc脑电设备 1篇 -
Thinkpadwifi驱动 1篇 -
Ubuntu软件 80篇 -
ABB机械臂 5篇 -
杂乱笔记 72篇 -
课程-现代控制理论- 27篇 -
课程-计算机控制技术- 29篇 -
课程-单片机理论与实践- 28篇 -
课程-人机智能交互技术- 12篇 -
课程-专业工具软件与应用- 13篇 -
课程-机器人系统设计及控制- 41篇 -
课程-智能机器人综合实践- 27篇 -
课程-机器人控制器编程- 14篇 -
人工智能基础(高中版) 41篇

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
- 最近
- 文章
- 专栏
- 问答
- 代码仓
- 视频
- 社区


最近
文章
专栏
问答
代码仓
视频
社区


























































