晏清
码龄8年
求更新 关注
提问 私信
  • 博客:4,123
    社区:1
    动态:35
    4,159
    总访问量
  • 12
    原创
  • 1
    粉丝
  • 110
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
加入CSDN时间: 2018-01-12
博客简介:

YH201707029的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得1次评论
  • 获得4次收藏
  • 博客总排名1,470,548名
创作历程
  • 10篇
    2021年
  • 2篇
    2020年
成就勋章
TA的专栏
  • python读书笔记
    2篇
  • C++ Progamming Language(Forth Editi
    3篇
  • Natural Language Processing with Py
    5篇
  • web
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 7

TA参与的活动 0

兴趣领域 设置
  • 大数据
    hadoop
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

43人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

2.2 变量

我们对2.1的python代码做如下修改: ` pythonmessage = ‘hello world!’print(message)
原创
博文更新于 2021.07.24 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2.1 运行hello_world.py时发生的情况

hell_word.py实际上,即使运行简单的程序,python所做的工作也相当多。print("Hello world!")运行hello_world.py时,末尾的.py指出这是一个python程序,因此编辑器使用python解释器来运行它。python解释器读取整个程序,确定其每个单词的含义。例如,看到单词print时,解释器就会将括号中的内容打印到屏幕,而不会管括号中的内容是什么。...
原创
博文更新于 2021.07.24 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基本概念

C++是一种编译型语言。顾名思义,要想运行一段C++程序,需要首先用编译器把源文件转换成对象文件,然后再用连接器把这些对象文件组合生成可执行文件。一个C++程序通常包含许多源代码文件。一个可执行程序适用于一种特定的硬件/系统组合,是不可移植的。例如,可执行程序无法从Mac移植到Windows PC。当我们谈论C++程序的可移植性时,通常是指源代码的可移植性。也就是说,同一份源代码可以在不同系统上成功编译并运行。ISO的C++标准定义了两种实体:核心语言功能,比如内置类型(如char和int)和循环
原创
博文更新于 2021.04.06 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

计数词汇

首先,让我们以文本中出现的词和标点符号为单位算出文本从头到尾的长度。我们使用函数len获取长度,请看在《创世纪》中使用的例子:《创世纪》有44764个词和标点符号或者叫“标识符”。一个标识符是表示一个我们想要放在一组对待的字符序列的术语。当我们计数文本中标识符的个数时,如to be or not to be 这句话,我们计数这些序列出现的次数。因此,我们的例句中出现了to和be各两次,or和not各一次。然而在例句中只有四个不同的词。《创世纪》中有多少不同的词?要用Python来回答这个问题,我们处理
原创
博文更新于 2021.04.06 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

搜索文本

词语索引视图显示一个指定单词的每一次出现,连同上下文一起显示。下面我们用concordance函数来查看《白鲸记》中的词monstrous:你也可以搜索我们已经列入的其他文本。例如:使用text3.concordance(“lived”)搜索《创世纪》找出某人活了多久;你也可以看看text4,《就职演说语料》,回到1789年看看那时英语的例子,搜索如nation,terror,god这样的词,看看随着时间推移这些词的使用如何不同。词语索引使我们看到词的上下文。例如:我们看到monstrous出现的上下文
原创
博文更新于 2021.04.06 ·
202 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLTK_DATA配置

在配置完NLTK_DATA环境变量后在Python提示符后输入:from nltk.book import *#这个book模块包含你阅读文章所需要的所有数据
原创
博文更新于 2021.04.06 ·
647 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLTK

NLTK定义了一个使用Python进行NLP编程的基础工具。它提供重新表示自然语言处理相关数据的基本类,词性标注、文法分析、文本分类等任务的标准接口以及这些任务的标准实现,可以组合起来解决复杂问题。软件安装在官网上下载NLTK_DATA,并配置全局变量...
原创
博文更新于 2021.04.03 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

为什么使用Python?

Python是一种简单但功能强大的编程语言,非常适合处理语言数据。Python可以从官网免费下载,能够在各种平台上安装运行。Python的学习曲线比较平缓,文法和语义比较清晰,具有良好的处理字符串的功能。作为解释性语言,Python便于交互式编程。作为面向对象语言,Python允许数据和方法被方便的封装和重用。作为动态语言,Python允许属性等到程序运行时才被添加到对象,允许变量自动类型转换,提高开发效率。Python自带强大的标准库,包括图形编程、数值处理、和网络链接等组件。...
原创
博文更新于 2021.04.03 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

C++的设计

程序设计语言的目的是帮助我们用代码来表达思想。因此,一种程序设计语言要完成两个相关的任务:1. 为程序员提供一个工具,用来指明需要由计算机执行什么动作2.为程序员提供一组概念,用于思考能做些什么对于第一个目标,理想情况是语言更“靠近机器”,使得程序员能很容易地找到方法来简单高效地处理计算机所有重要的方面。C语言最初就是出于这种考虑而设计的。第二个目标理想情况下要求语言更“”接近带求解的问题“”,这样就能直接而具体地表达问题求解方案的概念。在创造C++时向C添加的那些特性,如函数实参检查、const、类
原创
博文更新于 2021.04.02 ·
215 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

The C++ Progrmaming Language(Forth Edition)

Bjarne Stroustrup
原创
博文更新于 2021.04.02 ·
163 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HTML(HTML简介及发展历史)

HTML发展历史欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入版本年...
原创
博文更新于 2020.02.09 ·
1020 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

OpenCV(读取显示图片)

闲话少说直接抛代码import cv2img = imread("test.jpg",cv.IMRAED_UNCHANGED)cv.imshow('scene',img)相关函数用法解释:cv2.imread() 第一个参数为图像文件的路径(绝对路径或相对路径) 第二个参数告诉函数如何读取 cv2.IMREAD_GRAYCALE:以灰度模式读入图像 cv2.IMRAED_...
原创
博文更新于 2020.02.03 ·
528 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏