TextIn智能文档云平台
码龄1年
求更新 关注
提问 私信
  • 博客:120,503
    120,503
    总访问量
  • 192
    原创
  • 361
    粉丝
  • 2
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
目前就职: 上海合合信息科技股份有限公司
加入CSDN时间: 2025-01-13

个人简介:合合信息旗下智能文字识别平台

博客简介:

TextIn智能文档云平台的官方博客

查看详细资料
个人成就
  • 获得2,165次点赞
  • 内容获得0次评论
  • 获得1,992次收藏
  • 博客总排名12,870名
  • 原力等级
    原力等级
    4
    原力分
    809
    本月获得
    120
创作历程
  • 192篇
    2025年
成就勋章
TA的专栏
  • 票据识别
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    计算机视觉人工智能图像处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

如何提高RAG系统处理私有文档的准确率

2025年12月,OpenAI发布的GPT-5.2大模型在长文档分析、专业知识处理等场景实现显著突破,进一步推动企业级应用深化。然而,当大模型遇上科研辅助、金融建模、内部知识库等私有文档处理场景时,RAG(检索增强生成)技术的效果却参差不齐——有团队实现90%以上准确率,也有系统频繁出现答案失真、信息残缺等问题。这背后的差距,往往源于一个被低估的环节:文档解析质量。
原创
博文更新于 2025.12.17 ·
225 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

大模型如何智能总结文档

在RAG系统与大模型的实际应用中,许多团队发现系统表现与预期存在较大差距。根本原因在于:优质的文档解析并非简单提取文字,而是对文档内容进行深度理解与结构化重建——既要还原标题层级、段落顺序、表格结构等显性信息,也要捕捉元素间的语义关联。传统OCR工具的局限性恰好凸显了这一问题:当缺乏结构、语义断裂的数据直接输入RAG系统时,会引发连锁反应——检索效率低下,系统难以精准定位包含答案的关键片段;答案准确性受损,上下文缺失导致大模型产生理解偏差;信息完整性打折,表格数据混乱、跨页信息断裂,关键细节丢失。
原创
博文更新于 2025.12.17 ·
364 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

LLM处理非结构化文档有哪些痛点

企业数字化转型进程中,80%以上的核心数据以PDF、Word、扫描件等非结构化形式存在。然而,大语言模型在处理这些文档时却频频"翻车"——表格识别错位、跨页内容断裂、手写字符无法辨认。这些技术瓶颈不仅拖累了知识库构建效率,更让企业的海量文档资产沦为"数字垃圾"。TextIn作为专业的文档解析工具,正通过技术创新将非结构化文档转化为LLM可高效利用的结构化数据,成为衔接文档与智能应用的关键桥梁。
原创
博文更新于 2025.12.17 ·
312 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

图表识别技术的实现步骤

在数字化办公时代,我们习惯了用Excel生成精美图表,却很少思考一个反向问题:如何将报告中的图表重新转化为可分析的原始数据?这个看似简单的需求,实际上对技术提出了极高要求。合合信息旗下的TextIn文档解析平台,通过四大核心步骤破解了这一难题,让图表数据的逆向提取从"不可能"变为"一键完成"。
原创
博文更新于 2025.12.16 ·
292 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

图片转文字后怎么输入大模型处理

当企业面对堆积如山的扫描合同、影印财报时,传统OCR识别出的文字往往杂乱无章,直接输入大模型后得到的结果差强人意。这个困扰75%开发者的技术难题,正是非结构化数据处理的"死穴"。合合信息TextIn文档解析给出了一套完整答案:不是简单地把图片转成文字,而是将混乱的文档"提纯"成大模型真正能理解的结构化数据。
原创
博文更新于 2025.12.16 ·
304 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

文档分块时,如何避免把表格或关键段落割裂?

该工具支持 PDF、Word、DOCX、HTML、JPG、PNG 等多种格式输入,可通过在线使用、API 调用、本地部署等灵活方式适配不同场景,批量解析 100 页文档最快仅需 1.5 秒,企业级 500 万页 + PDF 文档可在三天内完成处理,既满足个人高效办公需求,也能承接大规模企业级文档处理任务。工具自动扫描文档内容,精准识别有线 / 无线表格、章节标题、关键段落、列表、公式、手写体、扫描件等各类元素,尤其针对跨行合并表格、嵌套表格、双栏布局等复杂结构,进行专项识别与标记,明确元素边界与语义关联。
原创
博文更新于 2025.12.16 ·
897 阅读 ·
29 点赞 ·
0 评论 ·
18 收藏

如何减少大模型基于文档回答时的幻觉问题?

● 文档理解存在天然局限:多模态模型虽具备图像识别能力,但面对复杂表格(如合并单元格、跨页表、框线残缺表)、手写批注、印章覆盖的文档,或融合文本、图表、公式、签名的多元素综合体时,难以精准提取关键信息,无法完成基础的 “信息读懂” 环节,只能通过 “脑补” 填补信息空白,导致幻觉产生。将含复杂表格、多元素的目标文档(如行业报告、论文、合规文件等)上传至 TextIn 平台,工具会自动启动多模态元素扫描,快速定位文档中的表格、文本、手写体、印章、图表、公式等核心元素,完成初步分类,为针对性解析奠定基础。
原创
博文更新于 2025.12.16 ·
833 阅读 ·
23 点赞 ·
0 评论 ·
18 收藏

如何将公司内部知识库(Word/PDF)接入大模型?

TextIn 智能文档解析:作为专业的智能文档处理云平台,拥有 18 年技术沉淀,支持直接解析 Word、PDF、Excel、PPT、手写笔记、拍摄图像等十余种异构格式文件,能精准识别文本、表格、公式、图表、页眉页脚、印章等各类元素,甚至可处理带水印、弯曲变形、跨页关联的复杂文档。在 Coze 平台点击「创建」→「智能体」,为智能体命名(如 “内部知识库助手”“竞品分析专家”),并填写功能描述(如 “基于公司内部项目规范文档,提供流程咨询与问题解答的 AI 助手”);报纸、期刊的复杂版式专项优化中;
原创
博文更新于 2025.12.16 ·
1063 阅读 ·
23 点赞 ·
0 评论 ·
13 收藏

RAG 技术如何让大模型更好地处理私有文档?

而随着大模型在科研辅助、金融建模、内部知识库搭建等私有文档处理场景的需求激增,RAG(检索增强生成)技术作为解决大模型私有数据访问、降低幻觉风险的关键方案,其应用效果的优化成为行业关注焦点 —— 数据质量正是决定 RAG 系统能否适配新一代大模型能力、高效处理私有文档的核心前提。支持 PDF、Word、Excel、PPT、图片、手写笔记等十余种非结构化文件格式,同时适配带水印、弯曲图像、扫描件、截屏等特殊载体,覆盖企业科研文档、合同文件、生产标准、售后资料等各类私有文档类型。
原创
博文更新于 2025.12.16 ·
627 阅读 ·
16 点赞 ·
0 评论 ·
13 收藏

12.23上海 · 闭门会 | CIO云集,从文档到决策引擎,制造业的下一个效率瓶颈与突破口

12.23上海见!
原创
博文更新于 2025.12.11 ·
232 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

从散乱资料到智能知识库:基于TextIn与Coze的RAG实战

基于内部资料进行精准、可溯源的回答
原创
博文更新于 2025.12.11 ·
537 阅读 ·
30 点赞 ·
0 评论 ·
15 收藏

抽取出的JSON结构混乱,如何设计后处理规则来标准化输出?

金融业务贷中审核环节,金融机构专注于业务流、信息流、物流、现金流的数据整合及交叉验证,但在产业端数字化水平有限以及合规审核要求严格的背景下,审核人员需要对业务合同、发票、运输单等大量纸质材料的关键信息进行细致的审核校验和交叉比对、认定此次业务的资产信息,继而通过动产融资统一登记公示系统对拟登记资产进行查重以确认其有效性,整个贷中审核过程耗费审核人员大量的时间和精力。同时,后处理规则支持灵活调整,当业务场景或系统需求变化时,仅需在解析工具中修改规则配置,无需重构整体解析流程,后续维护成本降低50%以上。
原创
博文更新于 2025.12.10 ·
517 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

开源OCR大模型和闭源工具怎么选?

在学术研究、金融分析、法律合同、工程设计等领域,PDF已成为信息存储与传递的核心载体,但包含复杂表格、公式、图表、手写批注、多栏排版的PDF文档,却让OCR技术的应用陷入诸多困境,也让企业在开源OCR大模型与闭源工具的选型上倍感纠结,具体痛点与选型关联紧密。以TextIn文档解析为例,在OmniDocBench数据集评测中,解析速度达1.2秒/页,比主流开源工具快近8倍,100页文档仅需1.5秒即可完成解析,批量处理能力可支撑500万页+企业数据,远超多数开源模型的原生性能。其三,使用便捷且下游适配性好。
原创
博文更新于 2025.12.10 ·
713 阅读 ·
20 点赞 ·
0 评论 ·
27 收藏

如何使用大模型处理图片和PDF并抽取信息?

二是数据精度超高,降低业务风险。针对大模型处理图片和PDF等复杂文档的痛点,合合信息是大模型时代下文本智能处理技术领先者,旗下的TextIn文档解析打造了一套从文档预处理到信息结构化的完整解决方案,为大模型提供高质量数据输入,同时结合业内成熟技术方法,形成全方位处理体系。收集需要处理的目标文档,包括图片格式(如扫描件、影印件)和PDF格式(含多栏布局、混合表格、手写批注等复杂元素的文档),梳理文档类型与核心信息需求(如合同中的金额信息、财报中的表格数据等),确保文档清晰、完整,为后续处理做好基础准备。
原创
博文更新于 2025.12.10 ·
771 阅读 ·
14 点赞 ·
0 评论 ·
23 收藏

什么是多模态信息抽取,它和传统OCR有什么区别?

关联的百度开源PaddleOCR-VL模型在OmniDocBench榜单中,以92.6的综合得分斩获全球第一,这一成绩不仅凸显了其在文档元素识别上的高精度,更印证了多模态信息抽取技术相较于传统OCR的核心优势——传统OCR在复杂表格解析中准确率普遍低于60%,且无法处理跨页、框线残缺等特殊表格,而TextIn文档解析的解析能力已实现质的飞跃。多模态信息抽取技术,是依托多模态技术发展而来的新型信息处理技术,其核心是对包含文本、表格、图表、公式、手写体、印章等多种元素的复杂文档进行全面解析与精准提取。
原创
博文更新于 2025.12.10 ·
598 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

文档结构化信息提取技术方案对比

在AI驱动的数字化转型浪潮中,文档结构化信息提取已成为企业数据治理的核心环节。面对市场上琳琅满目的技术方案——从视觉大模型到传统OCR,从云端API到本地部署,技术选型的困惑始终困扰着开发者。一份来自专业用户的实测报告揭示:不同方案在成本、精度、速度上的差异远超预期,而INTSIG DocFlow等成熟平台正以其均衡的性能表现,为企业提供着更务实的选择。
原创
博文更新于 2025.12.09 ·
453 阅读 ·
6 点赞 ·
0 评论 ·
18 收藏

传统OCR识别有什么局限性

在企业数字化转型的浪潮中,文档处理效率直接影响业务运转速度。然而,许多企业在使用传统OCR工具时,常常遭遇“识别了文字却用不了数据”的尴尬局面——扫描件变成了乱码文本,财务报表的表格结构全部丢失,合同条款被错误拆分。这些问题的根源,恰恰暴露了传统OCR技术难以逾越的技术鸿沟。
原创
博文更新于 2025.12.09 ·
314 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

如何快速提取PDF文档内容

纸质文档数字化已成为企业转型的必经之路,但扫描件文字提取的准确率却常常让人头疼。财务部门面对堆积如山的发票扫描件需要快速录入数据,法务团队要从合同扫描版中精准定位关键条款,制造企业的质检报告和订单扫描件需要批量审核统计。传统的手工录入不仅效率低下,更容易因人为失误导致数据错漏。选对工具,意味着从“逐页录入”到“批量识别”的效率飞跃。
原创
博文更新于 2025.12.08 ·
360 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

深度学习在版面分析中的应用方法

在电商仓库里,每天数万张物流单据曾需要人工逐一录入,耗时费力且错漏频发。但当文档版面分析技术投入应用后,机器能自动识别单据上的文字和布局,快速提取关键信息。这背后的技术革命,正是深度学习在版面分析领域的深度应用——从简单的文字识别,到理解复杂的表格、图片和多栏排版,合合信息等技术团队正在用AI重新定义文档处理的效率边界。
原创
博文更新于 2025.12.08 ·
417 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

大语言模型怎么提取文档信息

当企业面对堆积如山的合同、报告、图纸时,传统OCR工具常常“看得见却读不懂”。某制造企业因图纸版本识别错误引发的千万级质量事故,某金融机构将“不可抗力条款”误判为“免责声明”的AI质检失误——这些真实案例揭示了一个残酷现实:企业80%以上的非结构化数据正沦为“数据暗物质”,价值难以释放。而大语言模型与文档智能处理技术的深度融合,正在改写这一困局。
原创
博文更新于 2025.12.08 ·
536 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏
加载更多