周析明
码龄8年
求更新 关注
提问 私信
  • 博客:86,788
    社区:1,662
    问答:6,133
    94,583
    总访问量
  • 29
    原创
  • 491
    粉丝
  • 19
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2018-06-11

个人简介:道阻且长,行则将至。行而不辍,未来可期。

博客简介:

To learn, to engage.

博客描述:
Persistence
查看详细资料
个人成就
  • 获得263次点赞
  • 内容获得9次评论
  • 获得358次收藏
  • 代码片获得691次分享
  • 博客总排名128,297名
  • 原力等级
    原力等级
    4
    原力分
    572
    本月获得
    1
创作历程
  • 1篇
    2025年
  • 17篇
    2023年
  • 10篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • Linux
    8篇
  • 汇编
    1篇
  • C/C++
    12篇
  • python
    4篇
  • git
    4篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 6

TA参与的活动 1

兴趣领域 设置
  • 编程语言
    pythonc++c语言
  • 人工智能
    人工智能自然语言处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Linux grep 命令详解及示例大全

本文将全面介绍 grep 命令的常用选项,并结合示例帮助你掌握其使用技巧。
原创
博文更新于 2025.05.07 ·
1275 阅读 ·
20 点赞 ·
0 评论 ·
11 收藏

深度解析 awk 命令:文本处理的得力助手

awk 是一种强大的文本处理工具,被广泛用于数据提取、格式化和报告生成。
原创
博文更新于 2025.05.06 ·
1052 阅读 ·
34 点赞 ·
0 评论 ·
9 收藏

memcpy_s这类安全函数使用介绍(来自安全 C 库: Safe C Library )

由memcpy_s引出对这类安全函数的介绍,并简单介绍其使用方式
原创
博文更新于 2023.12.24 ·
29892 阅读 ·
11 点赞 ·
7 评论 ·
64 收藏

C语言实现堆

在 C 语言中,实现一个堆通常涉及使用动态内存分配来存储和管理数据。
原创
博文更新于 2023.12.23 ·
644 阅读 ·
8 点赞 ·
0 评论 ·
8 收藏

红黑树的C语言简单实现与代码解析

红黑树是计算机科学中一种重要的自平衡二叉搜索树。它确保了在最坏情况下,基本的动态集合操作(如插入、删除和查找)具有对数时间复杂度。
原创
博文更新于 2023.12.23 ·
1222 阅读 ·
11 点赞 ·
1 评论 ·
18 收藏

原子操作实现自旋锁

自旋锁是计算机科学中用于同步多个执行线程或进程的机制之一。与互斥锁(mutex)相似,自旋锁的目的也是为了防止多个线程同时访问临界资源。但是,与互斥锁不同的是,当自旋锁的临界资源被其他线程锁定时,尝试获取锁的线程不会立即进入阻塞状态,而是会持续地“自旋”等待,直到该锁变为可用状态。自旋锁是一种同步机制,用于在多线程或多处理器环境中保护临界资源。尽管它在某些情况下可以提供低延迟和高性能,但也需要注意其可能导致的 CPU 争用和不适合长时间临界区的限制。因此,在选择使用自旋锁时,应该考虑应用的具体需求和场景。
原创
博文更新于 2023.12.22 ·
925 阅读 ·
13 点赞 ·
0 评论 ·
7 收藏

原子操作:计算机科学中的基石

原子操作是一个不可分割的操作序列,这意味着它要么完全执行,要么完全不执行。这样可以确保在并发环境中,操作不会被其他任务或线程中断,从而防止数据不一致或其他潜在的并发问题。原子操作是计算机科学中的一个基础概念,它确保在多任务和多线程环境中的操作是不可中断的。通过使用原子操作,可以避免数据的不一致性、竞态条件和其他并发问题,从而确保程序的正确性和预期行为。在数据库管理、操作系统内核和并发编程等多个领域都广泛应用了原子操作,证明了其在现代计算机系统中的重要性和必要性。
原创
博文更新于 2023.12.22 ·
771 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

Ubuntu操作系统的全面指南:使用方式及常用命令介绍

熟悉Ubuntu的基本使用方式和一些核心命令是开始Linux之旅的关键。本指南将为您提供Ubuntu操作系统的深入了解,包括其基本使用方法和常用命令。
原创
博文更新于 2023.12.21 ·
5408 阅读 ·
30 点赞 ·
0 评论 ·
54 收藏

如何利用python分析excle表格数据及画出分析图

答:

要使用Python分析Excel表格数据并绘制分析图,我们可以使用以下库和工具:

pandas:用于数据操作和分析。
matplotlib:用于绘制图表。
以下是一个简单的步骤来实现此操作的示例:

  1. 数据分析
    首先,确保你已经安装了必要的库:
pip install pandas matplotlib openpyxl
  1. 示例代码
    假设我们有一个Excel文件 data.xlsx,其中包含一个名为 Sheet1 的工作表,该工作表包含以下数据:
日期         销售额   利润
2021-01-01   100    20
2021-01-02   150    25
2021-01-03   130    22
...         ...    ...

以下是如何读取这个Excel文件、对数据进行分析并绘制图表的示例代码:

import pandas as pd
import matplotlib.pyplot as plt

# 1. 读取Excel文件
file_path = 'data.xlsx'
df = pd.read_excel(file_path, sheet_name='Sheet1')

# 2. 数据分析
# 计算每日的销售总额和平均利润
daily_sales = df.groupby('日期')['销售额'].sum()
daily_profit = df.groupby('日期')['利润'].mean()

# 3. 绘制分析图
# 绘制每日销售总额的折线图
plt.figure(figsize=(10, 5))
daily_sales.plot(kind='line', marker='o', color='b', label='Daily Sales')
plt.title('Daily Sales Analysis')
plt.xlabel('Date')
plt.ylabel('Sales Amount')
plt.grid(True)
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('daily_sales_analysis.png')  # 保存图像
plt.show()

# 绘制每日平均利润的柱状图
plt.figure(figsize=(10, 5))
daily_profit.plot(kind='bar', color='g', alpha=0.7, label='Daily Profit')
plt.title('Daily Profit Analysis')
plt.xlabel('Date')
plt.ylabel('Average Profit')
plt.grid(True)
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('daily_profit_analysis.png')  # 保存图像
plt.show()

上述代码首先读取Excel文件中的数据,然后对数据进行分析,并使用matplotlib库绘制两个不同角度的分析图:每日销售总额的折线图和每日平均利润的柱状图。最后,图表将保存为PNG格式的图像文件。

回答问题 2023.12.21

python 代码编写,根据字典对应数字替换矩阵相关值

答:

为了根据aa_vec将三维矩阵转换为由序列组成,你可以使用以下步骤来实现这一目标:

  • 遍历三维矩阵 a 中的每一个元素。
  • 对于矩阵中的每一行,找到与 aa_vec 字典中最接近的值,并将该行替换为相应的键。
    以下是如何实现此操作的Python代码:
import numpy as np

def convert_matrix_to_sequence(a, aa_vec):
    # 遍历三维矩阵的每一行
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
            for k in range(a.shape[2]):
                # 获取当前元素值
                current_value = a[i, j, k]
                
                # 初始化最小差值和对应的键
                min_diff = float('inf')
                closest_key = None
                
                # 遍历aa_vec字典中的每一个键值对
                for key, value in aa_vec.items():
                    # 计算当前元素与字典中值的差值
                    diff = np.sum(np.abs(value - current_value))
                    
                    # 更新最小差值和对应的键
                    if diff < min_diff:
                        min_diff = diff
                        closest_key = key
                
                # 用最接近的键的值替换当前元素
                a[i, j, k] = aa_vec[closest_key]
                
    return a

# 示例数据
a = np.array([[[0.0, 0.55173373, 0.4961181, 0.2996214, 0.48656133], 
               [0.23692502, 0.06158114, 0.5125366, 1.0, 0.5043167]],

              # ... 其他行省略

              [[0.0, 0.55173373, 0.4961181, 0.2996214, 0.48656133], 
               [0.23692502, 0.06158114, 0.5125366, 1.0, 0.5043167]]])

# 转换矩阵
converted_matrix = convert_matrix_to_sequence(a, aa_vec)

print(converted_matrix)

这个函数会遍历矩阵 a 的每个元素,并找到与 aa_vec 中最接近的值,然后用相应的键替换该元素。

回答问题 2023.12.21

rsa私钥转换pem

答:

要将给定的 RSA 私钥信息转换为 PEM 格式的文件,你可以使用 Python 中的 cryptography 库。以下是一个简单的步骤和代码示例来实现这一转换:

1. 安装 cryptography 库:

如果你还没有安装 cryptography 库,可以使用 pip 进行安装:

pip install cryptography

2.使用 Python 代码:

下面的 Python 代码将给定的 RSA 私钥信息转换为 PEM 格式的文件。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa

def convert_to_pem(private_key_data, filename):
    # 使用给定的 RSA 私钥数据创建私钥对象
    private_key = serialization.load_der_private_key(private_key_data, password=None, backend=default_backend())
    
    # 将私钥以 PEM 格式序列化
    pem_data = private_key.private_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PrivateFormat.TraditionalOpenSSL,
        encryption_algorithm=serialization.NoEncryption()
    )
    
    # 将 PEM 格式的私钥保存到文件
    with open(filename, 'wb') as pem_file:
        pem_file.write(pem_data)

if __name__ == "__main__":
    # 给定的 RSA 私钥数据 (这里只是为了示例,你需要使用实际的私钥数据)
    private_key_data = b"YOUR_PRIVATE_KEY_DATA_HERE"
    
    # 调用函数将私钥数据转换为 PEM 文件
    convert_to_pem(private_key_data, 'private_key.pem')

注意:

  • 在上述代码中的 private_key_data 变量中,你需要替换 "YOUR_PRIVATE_KEY_DATA_HERE" 为你实际的 RSA 私钥数据(转换为二进制形式)。
  • 运行上述代码后,你将在同一目录下看到名为 private_key.pem 的 PEM 格式私钥文件。

请确保在实际使用之前仔细检查并替换示例代码中的私钥数据,并确保安全地管理和存储生成的 PEM 格式私钥文件。

回答问题 2023.12.21

python二进制转中文

答:

要将给定的二进制序列转换为相应的汉字“我”,你需要知道该二进制序列是如何编码的。汉字通常使用Unicode编码进行表示。对于汉字“我”,它在Unicode中的编码是U+6211。

给定的二进制序列11100110 10001000 10010001 可能表示这个Unicode值的UTF-8编码。为了从这个UTF-8编码中提取汉字“我”,你可以使用Python的bytes和str类型来转换。

以下是如何实现这个转换的Python代码:

# 给定的二进制序列 `11100110 10001000 10010001 `
binary_sequence = b'\xe6\x88\x91'

# 将二进制序列转换为字符串
decoded_str = binary_sequence.decode('utf-8')

# 打印转换后的字符串
print(decoded_str)  # 输出:我

在上述代码中,b'\xe6\x88\x91' 是给定的二进制序列,它表示汉字“我”的UTF-8编码。通过使用 .decode('utf-8') 方法,我们将这个UTF-8编码转换为相应的汉字“我”。

回答问题 2023.12.21

isaac gym场景导入

答:

如果你想在Isaac Gym中加载一个自定义的三维场景并进行物理模拟,通常的步骤可能包括:

  1. 创建或获取3D场景:首先,你需要有一个3D场景模型,这可以是一个已经存在的模型(例如在Blender、Unity或其他3D建模软件中创建的)。
  2. 转换和导入场景:将3D场景模型转换为Isaac Gym可以理解和加载的格式。Isaac Gym可能支持某种特定的场景描述格式,或者你可能需要使用额外的工具或脚本来完成转换。
  3. 设置机器人和物理模拟环境:一旦你有了场景,你可以在其中放置你的机器人模型,并设置物理模拟参数,如重力、摩擦等。
  4. 使用Python脚本进行控制和模拟:通过编写Python脚本,你可以控制机器人在物理模拟中的行为,例如执行特定的任务或强化学习训练。

以下是一个简化的Python伪代码示例,描述如何在Isaac Gym中进行上述操作:

import gym
import isaacgym

# 初始化Isaac Gym环境和场景
env = gym.make("IsaacGymEnv-v0")

# 加载自定义的3D场景
scene_path = "path_to_your_custom_scene.urdf"
env.load_scene(scene_path)

# 设置机器人和物理模拟参数
robot_path = "path_to_your_robot_model.urdf"
env.load_robot(robot_path)

# 循环进行物理模拟和控制机器人
for _ in range(1000):  # 例如,进行1000个时间步的模拟
    action = your_controller_function(state)  # 使用你的控制策略或强化学习策略生成动作
    observation, reward, done, info = env.step(action)  # 执行动作并获取新的观测、奖励等信息

    if done:
        break

# 关闭环境
env.close()

请注意,上述代码是一个简化的示例,并不代表实际的Isaac Gym使用方法。具体的实现细节和API可能会根据Isaac Gym的版本和更新而有所不同。

回答问题 2023.12.21

ARM 汇编入门

ARM 汇编语言是 ARM 架构的汇编语言,用于直接控制 ARM 处理器。虽然现代软件开发更多地依赖于高级语言和编译器,但理解 ARM 汇编仍然对于深入了解系统、优化代码和进行低级调试非常重要。
原创
博文更新于 2023.12.21 ·
1277 阅读 ·
10 点赞 ·
0 评论 ·
14 收藏

深入探讨 Linux 内核与 U-Boot 的内存管理

Linux 内核的内存管理是操作系统的关键组成部分,负责有效地管理系统内存资源。
原创
博文更新于 2023.12.20 ·
776 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

深度解析objdump:探索二进制文件的奥秘

objdump是GNU Binutils工具集中的一个工具,用于分析目标文件(object file)和可执行文件(executable file)。它可以显示二进制文件的汇编代码、符号表、段信息等,是理解程序底层实现、调试和逆向工程的有力助手。objdump是一个强大的二进制文件分析工具,通过它,我们可以深入了解程序的底层细节,有助于调试、逆向工程和优化。在实际应用中,结合上述命令和场景,你可以更好地利用objdump来探索和理解二进制文件的奥秘。
原创
博文更新于 2023.12.20 ·
1110 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

深度解析C语言链接器:编织代码的魔法之舞

在代码编写完成后,各个模块的地址可能分散在内存的不同位置。链接器的任务之一就是通过地址重定位,将这些分散的模块整合到正确的内存地址上。连接器在程序调试中也发挥着关键作用。在软件开发的舞台上,C语言连接器如同一位巧妙的编舞家,默默地将代码的各个部分串联成一场优美的演出。首先,连接器进行符号解析,识别并处理代码中的符号,包括函数和变量等。我们将深入研究库链接的细节,包括静态链接和动态链接,以及库的加载和运行时解析。通过深度解析C语言连接器,我们将更好地理解这位编舞家在代码舞台上的不可替代的角色。
原创
博文更新于 2023.12.20 ·
618 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

GDB 进阶:深入调试技术

GDB 调试技术
原创
博文更新于 2023.12.19 ·
736 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

GitHub 工作流配置详解

在本博客中,我们将深入了解 GitHub Actions,这是 GitHub 提供的一种强大的工作流配置工具,以及如何在你的项目中配置自定义的工作流。
原创
博文更新于 2023.12.19 ·
1894 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

深入解析 xargs 命令:强大的命令行辅助工具

可以使用xargs执行自定义的脚本,例如批量处理文件。在这个例子中,是一个自定义的脚本,接受一个文件名作为参数。
原创
博文更新于 2023.12.19 ·
874 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏
加载更多