【MOSH】软件工程师(mediphone)

您将投身于至关重要的事业,主要负责:
- 软件开发与维护。
- 优化我们的Web应用、确保服务稳定、安全、高效。

我们期待的伙伴画像

- 拥有Web应用或智能手机应用的开发经验,能独立负责核心模块。
- 具备商务日语沟通能力,能流畅与团队、客户对接。
- 愿意并能够迁居日本国内,沉浸式融入我们的文化与工作环境。

若您还拥有以下任一“加分项”,我们将倍感欣喜:
- 熟悉Go、React、Kotlin、Swift 等现代技术栈中的一种或多种。
- 具备API服务器与客户端(前后端)全链路开发的视野与能力。
- 不仅有开发技能,还拥有Web应用的运营与维护**经验。
- 乐于走出代码世界,与客户支持、销售团队并肩**探讨需求,共创解决方案。
- 内心深处认同:真正的成功,在于社会贡献与商业价值的双重实现。
- 拥有一双善于发现问题的眼睛和一颗积极动手改善内外部流程与瓶颈的心。

我们为您提供的,不止是一份薪资

- 有竞争力的回报:年薪500万至700万日元,匹配您的经验与价值。
- 稳固的保障:完备的社会保险(健康、雇佣、工伤等)、明确的退休制度(60岁)。
- 尊重与平衡:完全双休制、法定假日、充足的带薪休假(初年度10天起)、特别的年末年初假期与自由纪念日假。
- 激励与共享:股票期权制度与业绩挂钩奖金,让您的奋斗与公司成长同频共振。
- 温暖与连接:公司食堂、轮换午餐津贴促进跨部门交流,舒适的休息区是灵感迸发的角落。
- 清晰的规则:所有聘用、变动及解雇事宜,均严格遵循公开透明的工作规则。

感兴趣欢迎评论,主页也有更多的相关内容

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值