腾讯云开发者
码龄9年
求更新 关注
提问 私信
  • 博客:2,366,509
    社区:4,660
    视频:49
    2,371,218
    总访问量
  • 1,880
    原创
  • 707
    排名
  • 6,228
    粉丝
  • 18
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2017-01-16
博客简介:

QcloudCommunity的博客

查看详细资料
博客首页
个人成就
  • 企业官方账号
  • 获得6,964次点赞
  • 内容获得287次评论
  • 获得10,030次收藏
  • 代码片获得1,484次分享
  • 原力等级
    原力等级
    6
    原力分
    2,749
    本月获得
    45
创作历程
  • 189篇
    2025年
  • 201篇
    2024年
  • 186篇
    2023年
  • 136篇
    2022年
  • 122篇
    2021年
  • 182篇
    2020年
  • 188篇
    2019年
  • 515篇
    2018年
  • 177篇
    2017年
成就勋章
TA的专栏
  • 云荐大咖
    12篇
  • 腾讯云的1001种玩法
    38篇
  • 数实新声丨在一线 标杆案例访谈
    3篇
  • 腾讯云TVP大咖专访
    131篇
  • 重构
    1篇
  • 技思广益 · 腾讯技术人原创集
    5篇
  • 云加社区
    32篇
  • 云加社区线上活动
    1篇
  • 云加社区沙龙online
    1篇
  • 腾讯云
    209篇
  • 容器服务
    7篇
  • 机器学习
    37篇
  • 数据挖掘
    6篇
  • 前端
    19篇
  • 爬虫-python
    5篇
  • 网易云音乐
    1篇
  • 配置
    18篇
  • 自动化
    2篇
  • web
    18篇
  • 深度学习
    28篇
  • 个性化推荐
    8篇
  • 框架
    29篇
  • 云服务器
    76篇
  • 云计算
    79篇
  • 存储
    7篇
  • 安全
    15篇
  • 运维
    24篇
  • 游戏
    15篇
  • 图形处理
    11篇
  • 大数据
    19篇
  • 架构
    26篇
  • 图片处理
    6篇
  • android
    8篇
  • 神经网络
    6篇
  • 移动开发
    29篇
  • 游戏开发
    11篇
  • 区块链
    4篇
  • 物联网
    4篇
  • 云通信
    10篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    语音识别深度学习图像处理nlp数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

39人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

与 AI 共生,腾讯云携手行业专家共话数智驱动新质生长

发表《中国海诚智能制造解决方案介绍》的演讲。中国海诚常务副总裁、上海市智能制造产业协会副会长、保利中轻智能制造研究院副院长 张志张志介绍了中国海诚的发展历史:20 世纪 50-70 年代,其前身为轻工业部下属设计院;2002 年,设计院合并组建公司,定位为工程公司,并于 2007 年上市;2017 年,随中轻集团并入保利集团,成为轻工行业综合性工程公司。为布局“十五五”,公司加速数字化转型,全力发展智能制造业务,提出从传统工程服务商向“全周期生产性服务商”跃迁的目标,加快向科技公司转型的步伐。
原创
博文更新于 昨天 17:29 ·
456 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

实测GPT Image 1.5,跑分第一的它击败Gemini了吗?

prompt:创造一个超风格化的3D漂浮头部,呈现一个任性、魅力十足的主角,表情不满且不满:半睁的眼睛、拱起的眉毛和微妙的嘴角翘起,展现出经典的“恶毒女孩”态度。小车、公交车、自行车和行人在他周围穿梭,经典的伦敦红砖建筑、黑色灯泡和鹅卵石街道,在他的身形下显得渺小。图像编辑能力大幅升级:GPT Image 1.5 对已有图片的编辑也更加先进,可以对用户上传的图片进行“添加/移除特定对象”、“调整背景、风格与布局”等,这种编辑控制能力提升,使其不仅是“生成工具”,更像是 智能创意工作室。
原创
博文更新于 昨天 17:11 ·
503 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

我第一次被AI震惊的瞬间丨架构师坦白局

惊喜的是,当用 GitHub Copilot 写一个前端的模糊搜索组件,刚敲下function fuzzySearch,它就自动补全了基于 Levenshtein 距离算法的核心逻辑,连输入框防抖、拼音联想的适配代码都一并生成,甚至注释里还标注了 “适配移动端输入法候选词” 的细节,这让我都直呼 “比我想得还周全”。现在更焦虑的是自己能否快速掌握更多的AI思维能力,而不是纠结于 “代码写得比 AI 好”,为此我还自创了些和AI相关的思维模型,准备放在“一一思维”视频号里。凡是需要背锅的,就拼命深耕。
原创
博文更新于 前天 09:01 ·
497 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

TVP 七周年:奇迹同行,未来可期 | 文中有重磅好礼

您对腾讯云 TVP 七周年有怎样的生日祝福或寄语,您和 TVP 有怎样难忘的故事?”分享本推送(腾讯云 TVP 公众号原文)到朋友圈,发送关键词“七周年”到 TVP 公众号后台,即可参与重磅抽奖。是数百场交流、千次碰撞、无数个“同行”的瞬间。以技术为舟,以信任为帆,共赴可期未来。七年,是六百位技术领袖的同行征程。
原创
博文更新于 2025.12.17 ·
257 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

Multi-Agent全面爆发!一文详解多智能体核心架构及LangGraph框架

至此,关于LangGraph的介绍就全部结束了,LangGraph作为多智能体应用的编排框架,通过图结构、灵活的状态管理和控制流,为构建复杂的多智能体应用提供了强大基础设施。它作为LangChian生态的一部分,可以直接利用 LangChain 庞大的工具库和模型集成,无需从零开始编写所有功能,可以轻松调用各种现成的工具(如搜索引擎、数据库查询工具等)和模型,快速搭建起强大的多智能体应用。随着大模型的快速发展,构建智能体已成为大模型应用最基本的能力了,然而,单智能体在处理复杂、多步骤任务时往往存在局限性。
原创
博文更新于 2025.12.17 ·
907 阅读 ·
8 点赞 ·
0 评论 ·
16 收藏

大厂P9:为什么大部分程序员成不了架构师?

专注于开源技术、系统分析、架构设计,对互联网技术的特点和发展趋势有较深入的研究和理解,对于高性能、高可用、业务架构、系统解耦等有丰富的经验,著有《编程的逻辑:如何用面向对象方法实现复杂业务需求》、《从零开始学架构》,极客时间专栏《从0开始学架构》、《大厂晋升指南》作者,极客大学《架构实战营》讲师,博文视点20周年20人作者。造成这种问题的核心原因在于:看别人的文章和已有的架构设计,只能看到最终的架构设计结果,而看不到架构设计的过程,更看不到过程中的各种判断和决策。快速发展的业务可能有架构演进的机会。
原创
博文更新于 2025.12.12 ·
970 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

站在 AI 奇点之上,技术决策者如何破局?腾讯云架构师峰会来了!

这不仅仅是一场技术研讨,更是一次穿越周期的认知校准。本次峰会跳出了单一的技术工具论,致力于从“认知升维”的高度,探讨人工智能奇点期的产业方向。本次峰会邀请了腾讯云、Rokid、久痕科技、香港科技大学等产学研界的领军人物,从宏观的产业变革到微观的范式转移,全方位解读空间计算、智能体(Agent)协作等前沿趋势,帮助架构师在不确定的技术浪潮中找到确定的演进路径。
原创
博文更新于 2025.12.11 ·
735 阅读 ·
24 点赞 ·
0 评论 ·
6 收藏

SPEC 为什么会失败?

本文聚焦于五个典型的失败场景,剖析了从思维到流程上的关键问题,并提供具体的应对策略,旨在帮助开发者真正掌握与 AI 协作的新方法,让它成为提升工程质量与效率的可靠伙伴。例如,可以先变化为具体的规范(Rules),再用这些 Rules 来指导生成更靠谱的 SPEC 文件,把自由探索的成果,变成未来规范开发的基础。SPEC 的真正价值在于,它提供了一个框架,通过与 AI 的反复沟通,让你系统地思考并加深对问题的理解,最终交付高质量的成果。这意味着,AI 生成的初版 SPEC 只是讨论的起点,而不是最终的指令。
原创
博文更新于 2025.12.11 ·
788 阅读 ·
8 点赞 ·
0 评论 ·
30 收藏

非专业也能看懂的AI大模型工作原理!

以DeepSeek V3为例,其注意力层为潜在多头注意力层(MLA,这个是为了减少缓存的使用,不展开介绍),头数为128,对应有128个自注意力模块,前馈网络层包括257个专家(包括一个共享专家,256个可选专家,这里可以理解为257个前馈网络层并行,这跟多头很类似,区别是这里专家是选择使用的),然后这样的Transformer层在DeepSeek V3中有58层,还有3层无专家的Transformer层,共61层。大模型这么大的参数量,每个参数的取值都是通过一次次训练来逐渐调整的,训练数据要求非常大。
原创
博文更新于 2025.12.10 ·
776 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

腾讯元器:地球Online「合法外挂」智能体开发大赛[特殊字符]

关于腾讯元器: 腾讯元器是面向开发者的AI智能体一站式创建与分发平台,深度打通腾讯生态,用户无需编程,通过可视化界面即可快速构建具备对话、内容生成、图像处理等能力的智能体,并一键发布到微信公众号、小程序、微信客服、应用宝商店等腾讯生态场景。为平衡游戏难度,腾讯云开发者社区联合 腾讯元器 智能体平台正式启动 「合法外挂」机制:我们邀请所有具备开发能力的玩家,通过腾讯元器智能体平台,为自己、团队甚至整个服务器打造强大的辅助程序,以此提升生存几率和游戏体验。推荐以视频或 gif 动图的形式呈现智能体的使用效果;
原创
博文更新于 2025.12.04 ·
222 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

万字长文讲透LLM核心:Transformer架构原理解析

👉目录1 前言2 LLM 架构解析3 当前开源旗舰LLM架构4 总结本系列的文章由浅入深介绍LLM的基础知识,从大模型的使用,到原理解析,再到LLM系统实战。 这篇深入浅出的文章旨在解析大型语言模型(LLM)的智能来源,核心聚焦于其基础架构——Transformer的原理与构造。文章详细阐述了模型如何通过分词、词嵌入和位置编码将离散文本转化为可计算的连续向量,并强调了注意力机制在捕捉序列中复杂依赖关系中的关键作用。此外,它深入剖析了由自注意力层和前馈网络组成的解码器结构,并介绍了当前旗舰模型中采用的 Mo
原创
博文更新于 2025.12.04 ·
572 阅读 ·
13 点赞 ·
0 评论 ·
15 收藏

推荐系统三十年:从协同过滤到大模型时代的技术编年史

从技术演进的角度看,推荐系统走过了三十余年的发展历程,经历了几次关键的范式转移。据Gartner统计,在主流电商平台上,推荐系统贡献的成交额占比普遍在30%-40%之间,在视频平台这一比例更高,YouTube有超过70%的观看时长来自推荐。从协同过滤到大模型,从简单的相似度计算到复杂的神经网络,再到强大的语言模型,推荐系统已经走过了三十余年的旅程。未来,推荐系统将继续演进。从最初的邮件过滤,到今天无处不在的内容分发、商品推荐、社交匹配,推荐系统已经深度融入我们的数字生活,成为互联网产品不可或缺的基础设施。
原创
博文更新于 2025.12.04 ·
834 阅读 ·
22 点赞 ·
0 评论 ·
29 收藏

架构火花|一线视角下的AI:从应用边界到落地难题

企业场景中,AI 若过度替代业务环节,可能引发“技术挤压业务价值”的担忧——曾有案例显示,功能过于全面的 AI 产品因让业务部门感觉“自身价值被替代”而遭抵触,后续才意识到需在技术设计中考虑“业务让利”,保留人类在核心决策环节的价值。更值得关注的是 AI 的“确定性偏差”:面对不确定信息时,AI 不会像人类一样给出“可能”、“应该”等模糊提示,而是始终输出绝对化结论,使用者难以判断其结论是“真懂”还是“生成式作答”,这种特性在医疗诊断、法律判断等需严谨性的场景中风险极高,必须搭配人工校验环节。
原创
博文更新于 2025.12.01 ·
1011 阅读 ·
15 点赞 ·
0 评论 ·
18 收藏

共谈架构师 AI 进化论,腾讯云架构师技术沙龙圆满落幕

AI 发展日新月异,正深刻改变架构师的工作方式,并带来切实的效率提升。同时,也引发了新的思考:在 AI 时代,架构师如何重塑核心竞争力?系统架构如何有效融入 AI 能力?个人与组织如何在变革中前行?9 月 20 日,由腾讯云架构师技术同盟和腾讯云 TVP 联合主办的「架构师的 AI 进化论——从架构升级到行业应用」腾讯云架构师技术沙龙在合肥成功举办。活动汇聚多位深耕 AI 落地的一线资深架构师,聚焦真实场景、实战挑战与前瞻洞察,探讨 AI 时代架构设计的本质跃迁。会上,腾讯云架构师合肥同盟扬帆起航,为合肥地
原创
博文更新于 2025.12.01 ·
601 阅读 ·
10 点赞 ·
0 评论 ·
14 收藏

架构火花|35岁程序员该做些什么:留在国企vs切换赛道

因为我就是这样做的。上海同盟成员F:个人观点,感觉未来两年内,不管什么类型程序员都会把90%的代码编写工作交给AI写,先提前来适应和调整能力去适配AI主编码的模式,基于自己主技术栈,去看AI能完成很好的,就没必要去提升了,没有完成好的比较有价值,去分析为啥没完成好,是模型能力不行,还是当前业务场景不适配,针对性的再去调整和适配技术提升路线。上海同盟成员G:我说一个我觉得最实际的点就是,呆了这么久,当前有没有最直接的经济压力,如果工作安排这些并不会直接影响收入的话,我觉得大可不必在这内耗,生活是大于工作的。
原创
博文更新于 2025.12.01 ·
666 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

AI独孤九剑:AI没有场景,无法落地?不存在的。

等到通晓了这九剑的剑意,则无所施而不可,无所不出,无所不入,便是将全部变化尽数忘记,也不相干,临敌之际,更是忘记得越干净彻底,越不受原来剑法的拘束。嗯嗯,熟悉我的同学都知道,我也有一套应对变化的体系,称之为ITPAO,在其中AI以数字员工身份起到了非常大的作用,刚好我们就此一一对照,来帮助大家找到更好的AI落地场景。今天,我们以独孤九剑为例,介绍了在ITPAO体系使用AI辅助管理,应对变化的应用,一旦我们在这个层面使用AI,而不是仅仅把AI当成一个问答器,一个画图工,让AI发挥AI的长处,通过建立。
原创
博文更新于 2025.11.28 ·
343 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

从 RAG 到 KAG :结构化思考范式下的复杂推理

第二个阶段出现在今年年初,DeepSeek-R1 的发布进一步推动了技术的发展,特别是DeepSeek-R1 采用的开源策略,以及其创新的轻量、高效且可控的 GRPO(Group Relative Policy Optimization)强化学习方法,为该领域注入了新的活力。为了避免上述问题,我们采用了一个多层次的过程来提升知识的连通性和准确性:从文档出发,经过开放信息抽取,再到语义增强,包括本体对齐、上位概念生成、概念间关联构建以及同义词扩展,有效提升知识的连接性,确保模型能够准确理解不同概念间的关系。
原创
博文更新于 2025.11.28 ·
775 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

成为Linus Torvalds座上宾:我用47%性能飞跃完成了一次鹅厂程序员的逆袭

如果说IPI语义是我们在高密KVM场景下选择的第一块踏脚石,那么相同的设计模式同样可以应用于其他类型的语义信号——例如NUMA亲和性的跨节点访问模式、分布式事务的两阶段提交路径、甚至是微服务架构中的RPC依赖拓扑。这不是危言耸听——当你的竞争对手开始部署语义感知的调度器,在同样的硬件上榨出20%-40%的额外容量时,成本差异会直接体现在财报上。在4:1场景下,CPU饥饿成为新的主瓶颈,即使锁竞争完全消失,性能也上不去多少——这时你需要的不是更好的调度器,而是更多的物理核心。两阶段清理策略至关重要。
原创
博文更新于 2025.11.28 ·
351 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

数据与 AI 双向奔赴,腾讯云架构师技术沙龙精彩回顾

分享题为《Agent 时代数据重新定义应用》的演讲。腾讯云数据库产品总监、腾讯云架构师成都同盟理事 邹鹏邹鹏从“工程、流程、组织”三个维度,剖析研发团队在开发 Agent 过程中遇到的挑战,并分享了相关的思考与建议。在工程方面,他指出如果研发团队以传统软件流程的方式来开发 AI 应用,可能无法充分发挥 Agent 的智能潜力。真正的 Agent 应用应以模型驱动来决定智能上限,以工程来决定它的下限,因此 Agent 软件开发的重心需从工程转到模型。而模型的上限由预训练决定,模型的下限则由后训练来决定。
原创
博文更新于 2025.11.27 ·
1024 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏

AI时代,架构师还有存在必要吗?

当前,政府部门启用数字员工为市民服务的案例已经越来越多了,但目前这些数字员工的能力也仅仅是替代了一些人类员工重复性的劳动而已,或者说这些数字员工减轻的是人类员工的劳动量,但对市民的体验来说,不一定有太大的提升。我想未来的政府服务,将不再是”人去服务”,而是”服务找人”,比如,当你的某一项资质要到期年检了,政府的服务系统会第一时间帮你预约好办理时间,准备好相关的办理材料,甚至有些服务由AI自动帮你完成,你需要做的仅仅是做个身份确认就搞定,我想这才是最人性化的体验。你一开机,看到的不再是熟悉的壁纸和图标。
原创
博文更新于 2025.11.27 ·
423 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏
加载更多